A Solutions

1. (a) Employing the ratio test, we have

$$\frac{|x-2|^{n+1}/(3^{2(n+1)}(n+1))}{|x-2|^n/(3^{2n}n)} \ = \ \frac{|x-2|^{n+1}}{|x-2|^n} \cdot \frac{3^{2n}}{3^{2n+2}} \cdot \frac{n}{n+1} \ = \ \frac{|x-2|}{3^2} \cdot \frac{n}{n+1} \ \to \frac{|x-2|}{9} \ \text{as } n \to \infty.$$

The ratio test guarantees convergence when this (positive) fraction is less than 1, and divergence when it is greater than 1. Thus, we have convergence when

$$\frac{|x-2|}{9} < 1 \qquad \Rightarrow \qquad |x-2| < 9.$$

So, the series is centered at 2, and has radius of convergence 9.

(b) The endpoints of the interval of convergence—the numbers which are exactly 9 units away from 2—are (-7) and 11. We substitute these in for x and determine if the resulting series converge. At x = -7:

$$\sum_{n=1}^{\infty} \frac{(-1)^n (-9)^n}{(3^2)^n n} = \sum_{n=1}^{\infty} \frac{[(-1)^2]^n 9^n}{9^n n} = \sum_{n=1}^{\infty} \frac{1}{n},$$

giving us the harmonic series (p-series with p = 1), which is divergent. So x = -7 is not included in the IOC.

At x = 11:

$$\sum_{n=1}^{\infty} \frac{(-1)^n 9^n}{(3^2)^n n} = \sum_{n=1}^{\infty} \frac{(-1)}{n},$$

giving us the alternating harmonic series, which converges by the Alternating Series Test. Thus, the IOC is (-7,11].

2. (a) The coordinates have derivatives

$$x'(t) = (2t+3)^{1/2}$$
 and $y'(t) = 1 + t$.

So,

$$\frac{dy}{dx} = \frac{1+t}{\sqrt{2t+3}} \qquad \Rightarrow \qquad \frac{dy}{dx}\Big|_{t=3} = \frac{4}{3},$$

giving the slope of the tangent line. The point of tangency is $(x(3), y(3)) = \left(\frac{9^{3/2}}{3}, 3 + \frac{9}{2}\right) = \left(9, \frac{15}{2}\right)$. Employing the point-slope formula for lines, the equation is

$$y - \frac{15}{2} = \frac{4}{3}(x - 9)$$
, or $y = \frac{4}{3}x - \frac{9}{2}$.

(b) The length of the arc is

$$\int_0^3 \sqrt{[x'(t)]^2 + [y'(t)]^2} dt = \int_0^3 \sqrt{2t + 3 + (1+t)^2} dt = \int_0^3 \sqrt{t^2 + 4t + 4} dt = \int_0^3 \sqrt{(t+2)^2} dt$$
$$= \int_0^3 (t+2) dt = \frac{1}{2} t^2 + 2t \Big|_0^3 = \frac{9}{2} + 6 = \frac{21}{2}.$$

3. (a) $(4 \, pts)$ We are facing 45° into Quadrant I but heading backwards 3 units from the origin with that bearing. The rectangular coordinates of the point we reach are $(-3/\sqrt{2}, -3/\sqrt{2})$.

- (b) (4 pts) The line segment from the origin to the given point is the hypotenuse of a right triangle whose obtuse angle (back to the positive *x*-axis) is $5\pi/6$. So, the reference angle is $\pi/6$ (or 30°), and when the shorter leg is of length 1 in a $30^\circ 60^\circ 90^\circ$ triangle, the length of the hypotenuse is 2. So, one set of polar coordinates (of course, there are infinitely many others) identifying this point is $(2, 5\pi/6)$.
- (c) (6 pts) Using that $x = r \cos \theta$ and $y = r \sin \theta$, we write

$$x^{2} + (y - 2)^{2} = 4 \qquad \Rightarrow \qquad (r \cos \theta)^{2} + (r \sin \theta - 2)^{2} = 4$$

$$\Rightarrow \qquad r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta - 4r \sin \theta + 4 = 4$$

$$\Rightarrow \qquad r^{2} (\cos^{2} \theta + \sin^{2} \theta) - 4r \sin \theta = 0$$

$$\Rightarrow \qquad r^{2} - 4r \sin \theta = 0$$

$$\Rightarrow \qquad r(r - 4 \sin \theta) = 0$$

$$\Rightarrow \qquad r = 4 \sin \theta.$$

4. (a) (8 pts) We have

$$f(x) = 3 \cdot \frac{1}{1 - (-4x)} = 3 \cdot \sum_{n=0}^{\infty} (-4x)^n = \sum_{n=0}^{\infty} (-1)^n (3) (4^n) x^n = 3 - 12x + 48x^2 - 192x^3 + \cdots$$

Convergence happens when

$$|-4x| < 1 \qquad \Rightarrow \qquad |x| < \frac{1}{4}.$$

So, the radius of convergence is R = 1/4.

(b) (6 pts) Applying term-by-term differentiation to the series in part (a), we get

$$-\frac{12}{(4x+1)^2} = \frac{d}{dx} \left(3 - 12x + 48x^2 - 192x^3 + \cdots \right) = -12 + 96x - 576x^2 + \cdots = \sum_{n=1}^{\infty} (-1)^n (3n) 4^n x^{n-1}.$$

5. (a) $T_3(x)$ includes the terms with powers of x up to and including 3. So,

$$T_3(x) = 1 - \frac{1}{2!} x^2.$$

(b) We have

$$-1 + \cos \sqrt{x} = -1 + 1 - \frac{(\sqrt{x})^2}{2!} + \frac{(\sqrt{x})^4}{4!} - \frac{(\sqrt{x})^6}{6!} + \dots = -\frac{x}{2!} + \frac{x^2}{4!} - \frac{x^3}{6!} + \dots = \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{(2n)!}.$$

(c) Dividing the series of part (b) by *x* and taking the limit, we have

$$\lim_{x \to 0} \frac{1}{x} \left(-\frac{x}{2!} + \frac{x^2}{4!} - \frac{x^3}{6!} + \cdots \right) = \lim_{x \to 0} \left(-\frac{1}{2!} + \frac{x}{4!} - \frac{x^2}{6!} + \cdots \right) = -\frac{1}{2} + 0 + 0 + \cdots = -\frac{1}{2}.$$