
A Solutions

1. (a) Employing the ratio test, we have
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The ratio test guarantees convergence when this (positive) fraction is less than 1, and divergence
when it is greater than 1. Thus, we have convergence when
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9

< 1 ⇒ |x − 2| < 9.

So, the series is centered at 2, and has radius of convergence 9.

(b) The endpoints of the interval of convergence—the numbers which are exactly 9 units away from
2—are (−7) and 11. We substitute these in for x and determine if the resulting series converge.
At x = −7:
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giving us the harmonic series (p-series with p = 1), which is divergent. So x = −7 is not included
in the IOC.

At x = 11:
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giving us the alternating harmonic series, which converges by the Alternating Series Test.

Thus, the IOC is (−7, 11].

2. (a) The coordinates have derivatives

x′(t) = (2t + 3)1/2 and y′(t) = 1 + t.

So,
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giving the slope of the tangent line. The point of tangency is (x(3), y(3)) =
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Employing the point-slope formula for lines, the equation is
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(b) The length of the arc is∫ 3
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3. (a) (4 pts) We are facing 45◦ into Quadrant I but heading backwards 3 units from the origin with that
bearing. The rectangular coordinates of the point we reach are (−3/

√
2,−3/

√
2).



(b) (4 pts) The line segment from the origin to the given point is the hypotenuse of a right triangle
whose obtuse angle (back to the positive x-axis) is 5π/6. So, the reference angle is π/6 (or 30◦),
and when the shorter leg is of length 1 in a 30◦ − 60◦ − 90◦ triangle, the length of the hypotenuse
is 2. So, one set of polar coordinates (of course, there are infinitely many others) identifying this
point is (2, 5π/6).

(c) (6 pts) Using that x = r cosθ and y = r sinθ, we write

x2 + (y − 2)2 = 4 ⇒ (r cosθ)2 + (r sinθ − 2)2 = 4

⇒ r2 cos2 θ + r2 sin2 θ − 4r sinθ + 4 = 4

⇒ r2(cos2 θ + sin2 θ) − 4r sinθ = 0

⇒ r2
− 4r sinθ = 0

⇒ r(r − 4 sinθ) = 0

⇒ r = 4 sinθ.

4. (a) (8 pts) We have
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Convergence happens when
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So, the radius of convergence is R = 1/4.

(b) (6 pts) Applying term-by-term differentiation to the series in part (a), we get
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5. (a) T3(x) includes the terms with powers of x up to and including 3. So,
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(b) We have
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(c) Dividing the series of part (b) by x and taking the limit, we have
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