A Solutions

1. (a) Employing the ratio test, we have
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The ratio test guarantees convergence when this (positive) fraction is less than 1, and divergence
when it is greater than 1. Thus, we have convergence when
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So, the series is centered at 2, and has radius of convergence 9.

<1 = [x—=2] < 9.

(b) The endpoints of the interval of convergence—the numbers which are exactly 9 units away from
2—are (=7) and 11. We substitute these in for x and determine if the resulting series converge.
Atx = -7
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giving us the harmonic series (p-series with p = 1), which is divergent. So x = -7 is not included
in the IOC.

Atx =11:
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giving us the alternating harmonic series, which converges by the Alternating Series Test.
Thus, the IOC is (-7, 11].
2. (a) The coordinates have derivatives
X(t) = +3)*  and  y(t) = 1+t

So,
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giving the slope of the tangent line. The point of tangencyis (x(3), ¥(3)) = (9?, 3+ g) = (9, %)

Employing the point-slope formula for lines, the equation is
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y-5 = g(x—9), or y = zx——.

(b) The length of the arc is
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3. (a) (4pts) We are facing 45° into Quadrant I but heading backwards 3 units from the origin with that
bearing. The rectangular coordinates of the point we reach are (—3/ V2, -3/ V2).



(b) (4 pts) The line segment from the origin to the given point is the hypotenuse of a right triangle
whose obtuse angle (back to the positive x-axis) is 51/6. So, the reference angle is /6 (or 30°),
and when the shorter leg is of length 1 in a 30° — 60° — 90° triangle, the length of the hypotenuse
is 2. So, one set of polar coordinates (of course, there are infinitely many others) identifying this
pointis (2,5m/6).

(c) (6 pts) Using that x = rcos 8 and y = rsin 6, we write

x2+(y—2)2=4 (rcos 0) + (rsin@ —2)? = 4

r*cos’ 0+ r*sin® 0 — 4rsin0 +4 =4
r*(cos? O + sin 6) — 4rsin 6 = 0

r? —4rsin0 =0

r(r—4sinf) =0

L

r=4sin06.

(a) (8 pts) We have

f(x) = 3- ﬁ =3-) (—4x)" = ;(—1)”(3)(4")% = 3-12x+4822 1923 +--- .

n=0

Convergence happens when

1
| —4x| <1 = |x|<Z.

So, the radius of convergence is R = 1/4.
(b) (6 pts) Applying term-by-term differentiation to the series in part (a), we get
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(a) Ts(x)includes the terms with powers of x up to and including 3. So,

1
T3(x) = 1- Exz.

(b) We have

-1+cos Vx = -1+1- = —— - =
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(c) Dividing the series of part (b) by x and taking the limit, we have
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