
B Solutions

1. (a) Employing the ratio test, we have
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The ratio test guarantees convergence when this (positive) fraction is less than 1, and divergence
when it is greater than 1. Thus, we have convergence when

|x − 1|
4

< 1 ⇒ |x − 1| < 4.

So, the series is centered at 1, and has radius of convergence 4.

(b) The endpoints of the interval of convergence—the numbers which are exactly 4 units away from
1—are (−3) and 5. We substitute these in for x and determine if the resulting series converge. At
x = −3:
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giving us the alternating harmonic series, which converges by the Alternating Series Test. Thus
x = −3 is in the IOC.

At x = 5:
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giving us the harmonic series (p-series with p = 1), which is divergent. So x = 5 is not included
in the IOC.

Thus, the IOC is [−3, 5).

2. (a) The coordinates have derivatives

x′(t) = 2 − 3t and y′(t) = (6t − 3)1/2.

So,
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giving the slope of the tangent line. The point of tangency is (x(3), y(3)) =
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Employing the point-slope formula for lines, the equation is
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3. (a) (4 pts) We are facing 135◦ relative to the positive x-axis, into Quadrant II, but heading backwards
2 units from the origin with that bearing. The rectangular coordinates of the point we reach are
(2/
√

2,−2/
√

2), or (
√

2,−
√

2).

(b) (4 pts) The line segment from the origin to the given point is the hypotenuse of a right triangle
whose obtuse angle (back to the positive x-axis) is 4π/3. So, the reference angle is π/3 (or 60◦),
and when the shorter leg is of length 1 in a 30◦ − 60◦ − 90◦ triangle, the length of the hypotenuse
is 2. So, one set of polar coordinates (of course, there are infinitely many others) identifying this
point is (2, 4π/3).

(c) (6 pts) Using that x = r cosθ and y = r sinθ, we write

(x − 3)2 + y2 = 9 ⇒ (r cosθ − 3)2 + (r sinθ)2 = 9

⇒ r2 cos2 θ − 6r cosθ + 9 + r2 sin2 θ = 9

⇒ r2(cos2 θ + sin2 θ) − 6r cosθ = 0

⇒ r2
− 6r cosθ = 0

⇒ r(r − 6 cosθ) = 0

⇒ r = 6 cosθ.

4. (a) (8 pts) We have
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So, the radius of convergence is R = 1/3.

(b) (6 pts) Applying term-by-term differentiation to the series in part (a), we get
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5. (a) T6(x) includes the terms with powers of x up to and including 6. So,
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(b) We have
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(c) Dividing the series of part (b) by x6 and taking the limit, we have
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