Applications of Integration

1. Find the area of the region enclosed by the graphs of $y = x^3 - 24x$ and y = 12x.

- 2. Sketch a region whose area is represented by the integral $\int_{-2/\sqrt{2}}^{2/\sqrt{2}} \left(\sqrt{4-x^2}-|x|\right) dx$, and evaluate using geometry.
- 3. Find the volume of the solid whose base is the semicircle $y = \sqrt{25 x^2}$, where $-5 \le x \le 5$ and whose cross sections perpendicular to the *x*-axis are squares.
- 4. An object with zero initial velocity accelerates at a constant rate 4 m/s². Find its average velocity during the first 14 s.
- 5. Find the volume of the solid obtained by rotating the region under the graph of $f(x) = 6x x^2$ about the *x*-axis over the interval [0, 2].
- 6. Find the volume of the solid obtained by rotating the region enclosed by the graphs of $y = 2\sqrt{x}$ and y = x about the line x = -14.
- 7. Find the volume of the solid obtained by rotating the region underneath the graph of $f(x) = 81 x^2$ about the *y*-axis over the interval [1, 9].
- 8. Find the volume of rotation of the region enclosed by the graphs of $y = x^3 + 2$, $y = 4 x^2$, and x = 2, as shown in the figure, about the line x = 4.

- 9. Compute the work required to stretch a spring from 8 cm to 11 cm past equilibrium, assuming that the spring constant is $k = 170 \text{ kg/s}^2$.
- 10. A 2-meter chain with linear mass density $\rho(x) = 2x(4-x)$ kg/m, $0 \le x \le 2$, lies on the ground. Calculate the work required to lift the chain from its front end so that its bottom is 2 m above ground. (Assume the chain is lifted from the end at x = 2, and take y = 9.8 m/s².
- 11. Approximate the arc length of the curve $y = 7e^{-x^2}$ over the interval [0, 2] using Simpson's Rule with 8 subintervals.
- 12. Find the centroid of the region lying underneath the graph of the function $f(x) = \ln(x^{10})$ over the ihnterval [1, 2].
- 13. Find the centroid of the region between the *x*-axis and the top half of the ellipse $\left(\frac{x}{2}\right)^2 + \left(\frac{y}{4}\right)^2 = 1$.