Parametric Equations and Polar Coordinates

- 1. Find parametric equations for the line segment joining the points (3,1) and (5,4).
- 2. Eliminate the parameter t in order to express the parametric equations in the alternate form y = f(x):

$$x = \sqrt{t} + 3$$
, $y = t - 49$.

- 3. Find the points on the parametric curve $c(t) = (3t^2 4t, t^3 12t)$ where the tangent line has slope 3.
- 4. (a) Determine the speed ds/dt along the curve $(5\sin(6t), 8\cos(6t))$ at time $t = \pi/4$.
 - (b) Determine the speed along the curve $(\ln(5t^2 + 5), 3t^3)$ at time t = 1.
- 5. How much area lies below the curve $c(t) = (3t 2, t^2/2 + 1)$ over the interval $0 \le t \le 3$?
- 6. (a) Convert the equation x = 4 to an equation in polar coordinates.
 - (b) Convert the equation $r = 3 \sin \theta$ to an equation in rectangular coordinates.
- 7. Describe the graph of the following polar equations:

(a)
$$r = 6$$

(c)
$$r = 7 \sec \theta$$

(b)
$$\theta = 8$$

(d)
$$r = 4 \csc \theta$$

8. Below is displayed the graphs of $r = 4\cos(2\theta)$ (solid curve) and of $r = 4\sin(2\theta)$ (dashed curve). On the left, the graphs are displayed in the θr -plane (i.e, as if r and θ were standard rectangular coordinates). On the right, they are displayed on the xy-plane, with the usual understanding of r as distance from the origin and θ as bearing. The interval $0 \le \theta < 2\pi$ is sufficient to draw the four-petaled leaves without retracing any part of a leaf. On the right, mark the four intersections which correspond to intersections on the left. Why are some intersections on the right "absent" on the left?

- 9. Find the length of the polar arc $r = \sin^2(\theta/2)$, $0 \le \theta \le \pi$.
- 10. Find the area of region simultaneously inside both polar curves $r = 5 \sin \theta$ and $r = 5 \cos \theta$.

11. Use the graph of $r = 2(1 - \cos \theta)$ on the left, plotted in the θr -plane (like rectangular coordinates) to sketch its graph on the xy-plane.

