Infinite Series and Power Series

- 1. Find the Taylor polynomials T_2 and T_3 centered at x=1 for the function $f(x)=\ln x/x$.
- 2. (a) Use the Maclaurin series of $(1-x)^{-1}$ to write the Maclaurin series for $f(x) = (1+2x^4)^{-1}$.
 - (b) Find the Maclaurin polyomials $T_0, T_1, T_2, \dots T_8$ for the same function f as in the previous part.
- 3. Determine the limit of the sequence $a_n = 28 3/n^{1/2}$, or show that the sequence diverges.
- 4. Consider the series $\sum_{n=1}^{\infty} \left(\frac{6}{n+2} \frac{6}{n+3} \right).$
 - (a) Find the partial sums S_3 , S_4 and S_5 .
 - (b) Find the sum of the series, or show that the series diverges.
- 5. Find the sum of the series $\sum_{n=0}^{\infty} \left(\frac{7\pi}{8e}\right)^n$, or show that the series diverges.
- 6. Use an appropriate test to determine the fate (convergent or divergent) of the series $\sum_{n=3}^{\infty} \frac{4 \ln n}{n^2}$.
- 7. Determine whether the series $\sum_{n=1}^{\infty} \frac{n^3 \cos n}{n^5}$ converges or diverges.
- 8. Determine whether the series $\sum_{n=1}^{\infty} \frac{\sin(n\pi/4)}{n^2}$ converges absolutely, converges conditionally, or diverges.
- 9. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+6)(n+9)}$ alternates.
 - (a) Explain how we know the series converges.
 - (b) Find the smallest (integer) value N for which the partial sum S_N of the series has an error of at most 10^{-5} .
- 10. Apply the Ratio Test to determine, if possible, the fate of the series $\sum_{n=1}^{\infty} \frac{5 \cdot 10^n}{2^{n^2}}$.
- 11. Apply the Root Test to determine, if possible, the fate of the series $\sum_{k=0}^{\infty} \left(\frac{k}{k+13}\right)^k$.

2

- 12. Find the interval of convergence for the power series $\sum_{n=0}^{\infty} \frac{x^n}{n^5 + 4}$.
- 13. (a) Find the Maclaurin series for the function $f(x) = \frac{9}{1+5x}$.
 - (b) What is the interval of convergence for this series?

- 14. Find the Maclaurin series for $f(x) = x^6 e^{-x^3}$.
- 15. Find the terms through degree four of the Maclaurin series of $f(x) = [1 + \sin(5x)]^{-1}$.