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1 Solving Linear Systems of Equations

1.1 Matrices, and Introduction to Ocrtave

Definition 1: An m-by-n real matrix is a table of m rows and n columns of real
numbers. We say that the matrix has dimensions m-by-n.
The plural of matrix is matrices.

Remarks:

1. Often we write a matrix A = (a;j), indicating that the matrix under consideration
may be referred to as a single unit by the name A, but that one may also refer to the
entry in the it row, jth column as ajj.

2. If one of the matrix dimensions m or 7 is equal to 1, it is common to call the table a
vector (or column vector, if n = 1; a row vector if m = 1). Though column vectors are
just special matrices, it is common to use lowercase boldface letters for them (like u,
v, X, etc.), reserving uppercase boldface letters for other types of matrices. When x is
an n-by-1 vector, we often denote its components with singly-subscripted non-bold
letters—x; for the first component, x; for the ond , and so on.

Practitioners carry out large-scale linear algebraic computations using software, and
in this section we will alternate between discussions of concepts, and demonstrations of
corresponding implementations in the software package Octave. To create a matrix (or
vector) in OcTavg, you enclose elements in square brackets ([ and ]). Elements on the same
row should be separated only by a space (or a comma). When you wish to start a new
row, you indicate this with a semicolon (;). So, to enter the matrices

41 3 0
[1 5 —2], _3 , and |-1 5|,
; 2 1

you can type/execute
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octave> [1 5 -2]
ans =
1 5 -2

octave> [4; -1; 3; 7]
ans =

4

-1

3

7

octave> A = [3 0; -1 5; 2 1];

In all but the third of these commands, Octave echoed back to us its understanding of
what we typed. It did not do so for the last command because we ended that command
with a final semicolon. Also, since we preceded our final matrix with “A =", the resulting
matrix may now be referred to by the letter (variable) A.

Just as writing A = (a;;) gives us license to refer to the element in the 20d row, 15t column
as ap1, storing a matrix in a variable in OcTave gives us an immediate way to refer to
its elements. The entry in the ond row, 15tcolumn of the matrix A defined above can be

obtained immediately by

octave> A(2,1)
ans = —1

That is, you can pick and choose an element from A by indicating its location in parenthe-
ses.

One can easily extract whole submatrices from A as well. Suppose you want the entire
first row of entries. This you do by specifying the row, but using a colon (:) in place of

specifying the column.

octave> A(1,:)
ans =

3 0

Next, suppose we want to get the first and third rows of A. Since we want full rows here,
we continue to use the colon where a column can be specified. We use a vector whose

entries are 1 and 3 to specify which rows.

octave> A([1 3],:)
ans =

3 0

2 1

There are some shortcuts in Octave when creating matrices or vectors with particular
kinds of structure. The colon may be used between numbers as a quick way to create row
vectors whose entries are evenly spaced. For instance, a row vector containing the first
five positive integers is produced by the command

e
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octave> 1:5
ans =
1 2 3 4 5

You can also specify a “step” or “meshsize” along the way, as in

octave> 1:.5:3
ans =
1.0000 1.5000 2.0000 2.5000 3.0000

One implication of the ability to create vectors in this fashion is that, if we wish to extract
the first two rows of the matrix A above, either of the commands

[ octave> A(1:2, :)

or

[ octave> A([1 2], :)

will do the trick. (Here and following, I have suppressed Octave’s output.)

Sometimes we want matrices (a pair of them) that contain the coordinates of a mesh

consisting of points in the plane. The meshgrid() command is useful for this purpose, as
exhibited below. As you see, meshgrid() returns two matrices, notjust one. In the example
we graph a collection of points from a mesh in the xy-plane, along with the meshgrid()
command generating x- and y-components for these points. Note that the contents of the

matrix Y are flipped from what you might expect.

octave> [X, Y] = meshgrid(0:3, 1:.5:3)
X =
3 ° ° °
0 1 2 3
0 1 2 3 * * ¢
0 1 2 3 2 ° . °
0 1 2 3
0 1 2 3 ® ® °
1 ° ° °
Y =
1.0000 1.0000 1.0000 1.0000 % % %
1.5000 1.5000 1.5000 1.5000 1 2 3
2.0000 2.0000 2.0000 2.0000
2.5000 2.5000 2.5000 2.5000
3.0000 3.0000 3.0000 3.0000

\ J
Aside: Suppose, above the region covered by our mesh, we want to view the surface

given by z = x?/y. You might use these commands (try them!).

octave> [X, Y] = meshgrid(0:3, 1:.5:3)
octave> Z = X."2 ./ Y
octave> mesh(X, Y, Z)
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You may be able to place your mouse cursor over this plot, click-hold and rotate the figure
around to view it from various perspectives. As you view the plot, it will occur to you
that the surface would be more appealing if we used a finer mesh. As an exercise, try
reproducing this surface over the same region of the xy-plane, but with grid points (in that
plane) just 0.1 apart.

A special class among the square matrices (i.e., those having equal numbers of rows
and columns) are the diagonal matrices. Such a matrix A = (aij) is one whose entries ajj
are zero whenever i # j. The diag() command makes it easy to construct such a matrix in
Ocrtavg, even providing the ability to place specified entries on a super- or subdiagonal
(i.e., a diagonal that lies above or below the main diagonal). We give here two examples
of the use of diag(). In the first case, the only argument is a vector, whose entries are then
placed on the main diagonal of an appropriately-sized diagonal matrix; in the 2nd cage,
the additional argument of (—1) is used to request that the vector of entries be placed on
the first subdiagonal.

octave> diag([1 3 -1])

ans =
1 0 0
0 3 0
0 0 -1

octave> diag([1 3 -1], -1)

ans =
0 0 0 0
1 0 0 0
0 3 0 0
0 0 -1 0

Other Octave commands that are helpful in producing certain types of matrices are
zeros(), ones(), eye(), and rand(). You can read the help pages to learn the purpose
and required syntax of these and other Octave commands by typing

help <command name>

at the Octave prompt. It is perhaps relevant to note that numbers (scalars) themselves are
considered by Octave to be 1-by-1 matrices.

The title of the next section is “Matrix Algebra.” Before we can dive into that, system
we must know what one means by the word equality.

Definition 2: Two matrices A = (4;;) and B = (b;;) are said to be equal if their
dimensions are equal, and if the entries in every location are equal.

Example 1:
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The two vectors

-1
2
5

[3 -1 2 5] and

cannot be considered equal, since they have different dimensions. While the entries

are the same, the former is a row vector and the latter a column vector.
|

Most programming languages can interpret the concept of “equal” in several ways, and
Ocrtave is no exception. A single equal sign is interpreted as assignment; when two equals
signs appear together, it is for the purpose of comparison.

a =4 % x has been assigned the value of 4

a =17 % comparing value in x with 7; returns FALSE (value = 0)
A = rand (3,2) % A is a 3-by—2 matrix with values generated randomly

a = A % Error: Cannot compare entities of different "types”

B = A; % B has been made to be identical to A

B(1,2) = 4 % (1,2)—entry in B has been reassigned value of 4

B == % Compares these two matrices entry—by—entry

A == rand(2,3) % Guess at the result , then view the answer

Some tips about the OcTave language:

e The next examples demonstrate other relational operators.

a =7 % returns TRUE (1) if the value in a is unequal to 7
a>=7 % returns TRUE (1) if the value in a is at least 7
a==4 &

|

4 % & is the logical AND operator
4 % | is the logical OR operator

b=
a==4 | b=

e When Ocrtave encounters the percent symbol (%), the rest of the line is considered a
comment.

e If you see an Octave command seemingly end in three dots ”...”, the command
actually carries over to the next line (with the dots ignored).

e If you perform, in succession, commands like

C = ones(4,5) % C is now a 4-by—5 matrix of all ones
C=1[2; 1; -1] % C is now a 3—-by—1 vector with specified entries

Octave does not put up a fuss, but readily adapts from C being an entity holding
20 double-precision values to one holding just three. When, however, you have
a matrix B already in existence, and you assign one of its entries (or reassign, as
occurred above in the line reading “B(1,2) = 4”), the size and shape of B do not
change.
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The flexibility Octave has over what is stored in a variable comes from the fact
that it determines variable type at the time of instantiation. Some people like this
feature, while others (C++ enthusiasts?) consider it an open doorway to sloppy
programming. Practically speaking, most variables are double-precision numbers,
or matrices/vectors containing double-precision numbers.

OcrtavE is case-sensitive, as exhibited by the “a == A” line above.

One can designate the default way that numbers are printed. Values which are clearly
integers may be printed with no trailing decimal and digits. The first time you start
Ocrave, it will display non-integers with 4 digits to the right of the decimal point;
very small numbers will be reported using scientific notation. Try the following

commands to see how one can change this method of displaying numbers.
(

pi

format long

pi

pi / 1076 % small number, uses scientific notation

format rat % better rational number approx to pi than 22/7

pi

format short % mode of display from when Octave was first started
pi

There are ways, of course, to make OcTave print a number with 6 (or some other
number) decimal places, but that seems rather unimportant for now.

In this course, the term vector will be synonomous with column vector. The set of vectors
having n components, all of which are real numbers, will be called R", or sometimes
Euclidean n-space. The elements of R" are n-by-1 matrices, sometimes called n-vectors.
However, as it takes less room out of a page to list the contents of a vector horizontally
rather than vertically, we will often specify an n-vector horizontally using parentheses, as

in

X = (-xlle/"'/le) .

1.2 Matrix Algebra

The most fundamental algebraic operations on matrices are as follows:

1.

Addition of Two Matrices.

Given two m-by-n matrices A = (a;;) and B = (b;;), we define their sum A + B to be
the m-by-n matrix whose entries are (a;; + b;;). That is,

ann a2 -0 A | [bin bz - b ann+byy ap+bp - A+ biy

ay  axp -+ Ay | |ba byn - by ay +by  ap+by - axy+by
+ . = . . .

Aml Am2  *°°  Amn bml me tee bmn Am1 + bml am2 + bm2 st Amp t bmn
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In order to add two matrices, they must have the same number of rows and columns
(i.e., be matrices with the same dimensions). Note that this is not the same as saying
they must be square matrices!

It is simple to add two matrices in Octave. One possibility is code like

octave> A= [3 1 6; 1 2 -1];
octave> A + ones(2,3)

ans
2 7
3 0

N =

which creates a 2-by-3 matrix A, and then adds to it another 2-by-3 matrix whose
entries are all ones.
. Multiplication of a Matrix by a Scalar.

Given an m-by-n matrix A = (4;;) and a scalar ¢, we define the scalar multiple cA to
be the m-by-n matrix whose entries are (ca;;). That is,

ailr A4z v p ca;p Cdip -+ Cdip

a1 dxp - Azp Cdpy Cdpxpp -+ CAzp
cl . . . = . .

Aml Am2  **°  Qmn Caml CAwp -+ Clmn

Our definitions for matrix addition and scalar multiplication have numerous impli-
cations. They include the following;:

a) Matrix subtraction is merely a combination of matrix addition and scalar multi-
plication by (-1): A-B := A+ (-1)B.

b) Distributive laws between matrix addition and scalar multiplication hold:
i. c((A+B) = cA+cB.
ii. (c+d)A = cA+dA.
c) Anappopriately-sized matrix whose entries are all zeros serves as an additive identity
(or zero matrix, denoted in boldface by 0). Thatis, A + 0 = A.
d) Scalar multiplication by 0 produces the zero matrix 0. That is, (0)A = 0.

In the lines of code below, we generate a 3-by-2 matrix whose entries are sampled
from a normal distribution with mean 0 and standard deviation 1. To exhibit scalar
multiplication in Octave, we then multiply this matrix by 3.

octave> 3*randn(3,2)
ans =
-4.03239 3.04860
1.67442 2.60456
0.33131 2.31099
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which produces a 3-by-2 matrix whose entries are sampled from a normal distri-
bution with mean 0 and standard deviation 1, and then multiplies it by the scalar
3.

3. Multiplication of Two Matrices

When we multiply two matrices, the product is a matrix whose elements arise from
dot products' between the rows of the first (matrix) factor and columns of the second.
An immediate consequence of this: if A and B are matrices, the product AB makes
sense precisely when the number of columns in A is equal to the number of rows
in B. To be clearer about how such a matrix product is achieved, suppose A is an
m-by-n matrix while B is an n X p matrix. If we write

rn -

I - cp C - I
A= d B = Pl

: an [l l l]

I'm —

with each of the rows r; of A having n components and likewise each of the columns
¢j of B, then their product is an m X p matrix whose entry in the ith _row, jM -column
is obtained by taking the dot product of r; with ¢;. Thus if

2 -1
0 3 3 1 0
A=l5 1 and B‘[—z 4 10]'
7 -4
then the product AB will be the 4 X 3 matrix
[ [ 3 [ 1] 0
(21 _1) ' ‘ ) | (2/ _1) : » 4 | (2/ _1) . i 10 |
3 1 0
AB = [ 3] (1] [0 |
(_5/ 1) : ‘ ) | (_5/ 1) : - 4 | (_5/ 1) . - 10 |
F g R o
(7/ _4) : _ ) | (7/ _4) : _ 4 | (7/ _4) . _ 10 |
8 -2 -10
_ -6 12 30
N -17 -1 10
| 29 -9 -40

IThe dot product of two vectors is a concept from vector calculus, studied primarily in the case where those
vectors have just two components. It appears as well in elementary physics courses.
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Remarks:

e When we write AB, where A, B are appropriately-sized matrices, we will mean
the product of these two matrices using multiplication as defined above. In
Ocrave, you must be careful to include the multiplication symbol (since AB is a
valid variable name), as in

octave> A = [1 2 3; 45 6];
octave> B = [2; 3; 1];
octave> Ax*B
ans =

11

29

Vectorization

The manner in which we defined matrix multiplication is the standard (and
most useful, as you will see) one. Nevertheless, there are times one has nu-
merous pairs of numbers to multiply. If, for each pair, one of the numbers is
stored in a vector x with its counterpart stored in the corresponding location of
a vector y, one could use a for loop to achieve this; the Octave code would look

something like this:
vectorSize = length(x) % 1 assume y is of the same length
z = zeros(size(x)) % creates a vector z, same size as X
for ii = l:vectorSize
z(ii) = x(ii) = y(ii);
end

This code cycles through the elements of the vectors x and y one at a time, so
the processing time of this loop increases as the length of the vectors increase.
In one test conducted by the author, the processing time was 0.00554 s when
the vectors were of length 500, but had jumped to 4.156 s for vectors of length
500,000.

As it is not rare for datasets to contain millions of values these days, we seek
a way to speed up such computations. In Octavg, the solution is to vectorize
the calculations. Without getting into the details, this essentially means the
software performs all of the calculations—products, in this case—in parallel,
performing them componentwise. We tell Octave to carry out componentwise
operations simultaneously on all elements of the vectors in question using the
dot (.) symbol. You witnessed one example of this sort of vectorization in
the “Aside” of the previous section, when I demonstrated a 3D plot using the
mesh() command. We can vectorize the lines of code above (loop and all) with
this single command:

[z =X .*xYy; % creates z and stores in it products from x, y ]
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10

It really does make a difference; when the vector sizes were 500,000 in my test
run, this vectorized code took 0.003328 s of processing time (as compared with
4.156 s when similar calculations were done in the for loop).

The reader should try creating two vectors of the same length (say, 10-by-1),
perhaps using commands like

[x = unidrnd (25, 10, 1) ]

which will fill the vector x with randomly-selected integers in the range 1-25.
If your two vectors are called x and y, then experiment with various non-dot
(unvectorized) and dot (vectorized) versions of calculations, such as

non-vectorized vs. vectorized

X+ Yy X .+ ¥y
X -y X .-y
X-.'cy x_:':y
x/y X ./y
x "3 x . 3

See if you can explain the differences (or lack thereof) in results, or why some
commands do not work at all. (Cudos to you if you can figure out how to
interpret the result of "x / y”.) As it turns out, the same dot notation tells
OcrtavE to perform operations componentwise for matrices as well as vectors—
that is, if we “dot-multiply” matrices A, B (perhaps like the two below on the
left side of the equals sign), we get the componentwise result (as displayed on
the right side of the equals sign):

a b o Bl _|aa bp

c d|l" |y o |ey do
This explains what is happening in the code of the “Aside” (last section). Do
not think of this as matrix multiplication (which was defined above, and yields

quite different results), nor as a dot product, but rather as the simultaneous
calculation of many products using vectorization.

Conveniently, most every mathematical function built into Octave’s mathemat-
ical library vectorizes its calculations. That is, you can obtain the values of the
sine function simultaneously for all inputs stored in x by simply asking for
them:

sin (x) % output is vector of same size as x

exp (A) % exponentiates every element in A

log (y) % takes natural log of every element in y
sqrt(B) % takes square root of every element in B

Notice that, if A is 4-by-2 and B is 2-by-3, then the product AB is defined, but the
product BA is not. This is because the number of columns in B is unequal to the
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number of rows in A. Thus, for it to be possible to multiply two matrices, one
of which is m-by-n, in either order, it is necessary that the other be n-by-m. Even
when both products AB and BA are possible, however, matrix multiplication is
not commutative. That is, AB # BA, in general.

We do have a distributive law for matrix multiplication and addition. In partic-
ular, A(B + C) = AB + AC, for all appropriately-sized matrices A, B, C.

When an m-by-n matrix A is multiplied by an n-by-1 (column) vector (an n-
vector, for short), the result is an m-vector. That is, for each n-vector v, Av
is an m-vector. It is natural to think of left-multiplication by A as a mapping
(or function) which takes n-vectors v as inputs and produces m-vectors Av
as outputs. Of course, if B is an {-by-m matrix, then one can left-multiply
the product Av by B to get B(Av). The manner in which we defined matrix
products ensures that things can be grouped differently with no change in the
answer—that is, so

(BA)v = B(Av) .

Notice that the n-by-n matrix

100 0
010 0
I, =0 01 0
000 -~ 1

has the property that, whenever C is an n-by-p matrix (so that the product I,,C
makes sense), it is the case that I,,C = C. Moreover, if B is an m-by-n matrix, then
BI,, = B. Since multiplication by I, does not change the matrix (or vector) with
which you started, I, is called the n-by-n identity matrix. In most instances, we
will write I instead of I,;, as the dimensions of I should be clear from context.

In Ocravg, the function that returns the n-by-n identity matrix is eye(n). This

explains the result of the commands
e

octave> A = [1 2 3; 2 3 -1]
A =

1 2 3

2 3 -1

octave> Axeye(3)
ans =

—_
N
@

11
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e For a square (n-by-n) matrix A, there may be a corresponding n-by-n matrix B

having the property that
AB = BA=1I,.

If so, the matrix A is said to be nonsingular or invertible, with inverse matrix
B. Usually the inverse of A, when it exists, is denoted by A~L. This relationship
is symmetric, so if B is the inverse of A, then A is the inverse of B as well. If A
is not invertible, it is said to be singular.

The following fact about the product of invertible matrices is easily proved.

Theorem 1: Suppose A, B are both n-by-n invertible matrices. Then
their product AB is invertible as well, having inverse (AB)~! = B~ 1AL

12

When A is invertible, it is not so easy to find A1 as one might think. With
rounding (and sometimes instability) in the calculations, one cannot, in general,
get a perfect representation of the inverse using a calculator or computer, though
the representation one gets is often good enough. In OcTave one uses the inv()
command.

r

octave> A =[1 2 3; 23 -1; 1 0 -2]

A =
1 2 3
2 3 -1
1 0 -2

octave> B = inv(A)

B =
0.66667 —0.44444 1.22222
—-0.33333 0.55556  —-0.77778
0.33333 —-0.22222 0.11111

octave> B*A

ans =
1.00000 -0.00000 0.00000
0.00000 1.00000 0.00000
0.00000 0.00000 1.00000

-

4. Transposition of a Matrix

Look closely at the two matrices

1 2 0 -1 éj_zz
A=|(-3-11 -1 and B =

2 20 1 o 10

-1 -1 1
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for a connection between the two. The matrix B has been formed from A so that
the first column of A became the first row of B, the second column of A became
the 2" row of B, and so on. (One might say with equal accuracy that the rows of
A became the columns of B, or that the rows/columns of B are the columns/rows
of A.) The operation that produces this matrix B from (given) matrix A is called
transposition, and matrix B is called the transpose of A, denoted as B = AT. (Note:
In some texts the prime symbol is used in place of the T, as in B = A’.)

When you already have a matrix A defined in Octavg, there is a simple command that
produces its transpose. Strictly speaking that command is transpose(). However,
placing an apostrophe (a prime) after the name of the matrix produces the tranpose
as well, so long as the entries in the matrix are all real numbers (i.e., having zero
imaginary parts). That is why the result of the two commands below is the same for

the matrix A on which we use them.
'S

octave> A = [1 2 3; 2 3 —-1]
A =

1 2 3

2 3 -1

octave> transpose (A)
ans =

2

3
-1

W N =

octave> A’

ans =
1 2
2 3
3 -1
S
Remarks:

e If A is an m-by-n matrix, then AT is n-by-m.
e Some facts which are easy to prove about matrix transposition are the following;:
(i) For all matrices A it is the case that (AT)T = A.

(ii) Whenever two matrices A and B can be added, it is the case that (A + B)T =
AT + BT

(iii) Whenever the product AB of two matrices A and B is defined, it is the case
that (AB)T = BTAT.
(Compare this result to Theorem 1, a similar-looking fact about the inverse
of the product of two invertible matrices.)

(iv) For each invertible matrix A, AT is invertible as well, with (AT)~! = (A™1)T.

13
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e There are some matrices A for which AT = A. Such matrices are said to be
symmetric.

1.3 Matrix Multiplication and Systems of Linear Equations

1.3.1 Several interpretations of matrix multiplication

In the previous section we saw what is required (in terms of matrix dimensions) in order
to be able to produce the product AB of two matrices A and B, and we saw how to produce
this product. There are several useful ways to conceptualize this product, and in this first
sub-section we will investigate them. We first make a definition.

Definition 3: Let Aj, Ay, ..., Ax be matrices all having the same dimensions. For
each choice of real numbers ¢y, . . ., ¢, we call

C1A1 aF C2A2 SRR CkAk

a linear combination of the matrices Ay, ..., A;. The set of all such linear combi-
nations
S = {C1A1 +cpAy + - +CkAk|C1,...,Ck E IR}

is called the linear span (or simply span) of the matrices Ay, ..., Ax. We sometimes
write S = span({Ay, ..., Ar}).

Here, now, are several different ways to think about product AB of two appropriately
sized matrices A and B.

14

1. Block multiplication. This is the first of four descriptions of matrix multiplication,

and it is the most general. In fact, each of the three that follow is a special case of
this one.

Any matrix (table) may be separated into blocks (or submatrices) via horizontal and
vertical lines. We first investigate the meaning of matrix multiplication at the block
level when the left-hand factor of the matrix product AB has been subdivided using
only vertical lines, while the right-hand factor has correspondingly been blocked
using only horizontal lines.
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Example 2:

Suppose

8 8[3|-45
A=|6 —6[1[-8 6|=[A|A]As]
5 3 (4|2 7

(Note how we have named the three blocks found in A!), and

-3 5 -5 -2
2 -2 2 -7 B,
B=|-6 6 0 3 |=]B8B
-3 2 -5 0 B3
0 -1 -1 4

Then

AB = A;B;+A;B, + A3B;3

5 8 [—3 5 -5 —2]
+

= |6 -6
_532—22—7

= |-30 42 -42 30 |(+| -6

~14 29 -9 —43]
= |-12 26 -8 57].
-39 40 -36 9 |

= = W

-3 2 50

~4 5
[0 -1 -1 4

[—6603]+—86
2 7

[ -8 24 -24 -72] [-18 18 0 9 12 -13 15 20

6 0 3|+|24 -22 34 24

| -9 19 -19 31| |-24 24 0 12 -6 -3 -17 28

While we were trying to keep things simple in the previous example by drawing only
vertical lines in A, the number and locations of those vertical lines was somewhat
arbitrary. Once we chose how to subdivide A, however, the horizontal lines in B had
to be drawn to create blocks with rows as numerous as the columns in the blocks of

Now, suppose we subdivide the left factor with both horizontal and vertical lines.

A.
Say that
A
A= | Ay
Az

Ay
A»
Az

Where the vertical line is drawn in A continues to dictate where a horizontal line
must be drawn in the right-hand factor B. On the other hand, if we draw any vertical

15
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1 Solving Linear Systems of Equations

lines in to create blocks in the right-hand factor B, they can go anywhere, paying no
heed to where the horizontal lines appear in A. Say that

B = By | By | Bis | Buy
By | B | By | Boy |
Then
[ A A
_ L2 By | Bi2 | Bis | By
AB = | An | Ax By | Bz | Bos | By
| Az | A
[ A11B11 + A12B21 | A11B1o + A1pBoo | A11Bis + A1pBos | A11Bis + ApBos
= | AyB11 +A»Boi | Ay1Bio + AxBoo | Ax1Biz + AoBos | A21Bis + ApByy
| A31B11 + A32B21 | A31B12 + A3xBoo | A31Bis + A3Bos | A31Big + AszxBoy
Example 3:

Suppose A, B are the same as in Example 2. Let’s subdivide A in the following

(arbitrarily chosen) fashion:

8 8 3 -4]5
A=|6 6 1 8|6
5 3 4 2|7

Ay
Ar

Ay
Ay

|

|

Given the position of the vertical divider in A, we must place a horizontal
divider in B as shown below. Without any requirements on where vertical
dividers appear, we choose (again arbitrarily) not to have any.

7= o)

-3 5 -5 -2
2 =2 2
B=|-6 6 0
-3 2 -5 0
0 -1 -1 4

16



1.3 Matrix Multiplication and Systems of Linear Equations

Then
[ A11B1 + ApB;
AB
| A21B1 + AxBo ]
-3 5 -5 -2
2 -2 2 -7
(8 83 ]| % 0 o 5 |+5[0 -1 -1 4]
-3 2 5 0
-3 5 -5 2

5 3 4 2 || -6 6
-3 2

[6—61—8] 2 -2

0 3 7
-5 0

2 7 +[6][0 -1 -1 4]

~14 29 -9 -43]
= [F12726 8 57
-39 40 -36 9

2. Sums of rank-one matrices. Now let us suppose that A has n columns and B has
n rows. Suppose also that we block (as described allowed for in the previous case
above) A by column—one column per block—and correspondingly B by row:

B
By
A=[A]A|-|A] ad B=|"|

By
Following Example 2, we get

n
AB = AB, +AsBo +---+A,B, = ZA]-Bj.
j=1

(1.1)

The only thing new here to say concerns the individual products A;B; themselves,
in which the first factor A; is a vector in R" and the ond g j is the transpose of a vector
in IR” (for some m and p).

So, take u € R” and v € R?. Since u is m-by-1 and v! is 1-by-p, the product uv?’,
called the outer product of u and v, makes sense, yielding an m-by-p matrix.

17
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Example 4:

Givenu = (-1,2,1) and v = (3,1, -1, 4), their vector outer product is

-1 3 -1 1 -4
uvT=2[31—14]=6 2 -2 8
1 3 1 -1 4

If you look carefully at the resulting outer product in the previous example, you
will notice it has relatively simple structure—its 2"4 through 4th columns are simply
scalar multiples of the first, and the same may be said about the 2"d and 3" rows
in relation to the 15trow. Later in these notes, we will define the concept of the
rank of a matrix. Vector outer products are always matrices of rank 1 and thus, by
(1.1), every matrix product can be broken into the sum of rank-one matrices.

. Linear combinations of columns of A. Suppose B has p columns, and we partition

it in this fashion (Notice that B; represents the jM column of B instead of the jth row,
as it meant above!):
B=|[B|B||B,]

This partitioning by vertical lines of the right-hand factor in the matrix product AB
does not place any constraints on how A is partitioned, and so we may write

AB=A[B;|B,|--- |B, | = [ AB1|AB,|--- | AB, |.

That is, for each j = 1,2,...,p, the /" column of AB is obtained by left-multiplying
the /" column of B by A.

Having made that observation, let us consider more carefully what happens when
A—suppose it has n columns Ay, Ay, ..., A,—multiplies a vector v € R". (Note that
each B; is just such a vector.) Blocking A by columns, we have

U1

o
Av = [ A1 A [ A || 7] = AL+ 2B+ 4 DA

Un

That is, the matrix-vector product Av is simply a linear combination of the columns
of A, with the scalars multiplying these columns taken (in order, from top to bottom)
from v. The implication for the matrix product AB is that each of its columns AB; is a

linear combination of the columns of A, with coefficients taken from the j' column
of B.



1.3 Matrix Multiplication and Systems of Linear Equations

4. Linear combinations of rows of B. In the previous interpretation of matrix multi-
plication, we begin with a partitioning of B via vertical lines. If, instead, we begin
with a partitioning of A, a matrix with m rows, via horizontal lines, we get

Aq AB

A, A;
AB = B = ;

A, A, B

That is, the j row of the matrix product AB is obtained from left-multiplying the
entire matrix B by the j row (considered as a submatrix) of A.

If A has 1 columns, then each A is a 1-by-n matrix. The effect of multiplying a 1-by-n
matrix V by an n-by-p matrix B, using a blocking-by-row scheme for B, is

By

VB = [’01 ‘02"" ‘Z)n ] i = Z)1B1+Z)2]32+-“+Z)an,

By,

a linear combination of the rows of B. Thus, for each j = 1,...,m, the jth row A;B
of the matrix product AB is a linear combination of the rows of B, with coefficients
taken from the jth row of A.
1.3.2 Systems of linear equations
Motivated by Viewpoint 3 concerning matrix multiplication—in particular, that
Ax = x1A1+x0A + -+ XA,

where A4, ..., A, are the columns of a matrix A and x = (x1,...,x;) € R"—we make the
following definition.

Definition 4: Suppose A = [ Al |Ay |- | Ay ], where each submatrix A; con-
sists of a single column (so A has n columns in all). The set of all possible linear
combinations of these columns (also known as span({Ay, ..., Ay}))

{C1A1+C2A2+"'+CnAn|C1,C2,...,Cn E]R} P

is called the column space of A. We use the symbol col(A) to denote the column
space.

19



1 Solving Linear Systems of Equations

The most common problem in linear algebra (and the one we seek in this course to
understand most completely) is the one of solving m linear equations

a11xX1 +apx + ...+ aXxy = bl
ar1xX1 + axpxy + ...+ dr,Xy = bz

: ) (1.2)
A1 X1 + AgpXo + ...+ AyXy = by

in the n unknowns x1, ..., x,. If one uses the coefficients and unknowns to build a
coefficient matrix and vectors

ay A4 e i X by

ay  axp - Ay X2 by
A= . . o x=1. and b=|.],

Aml Am2 " OGmn Xn bn

then by our definitions of matrix equality and multiplication, the system (1.2) may be
expressed more concisely as the matrix equation

Ax=b, (1.3)

where the vector b is known and x is to be found. Given Viewpoint 3 for conceptualizing
matrix multiplication above, problem (1.3) really presents two questions to be answered:

(I) Is b in the column space of A (i.e., is (1.3) solvable)?

(IT) If it is, then what are the possible n-tuples x = (x1, ..., x,) of coefficients so that the
linear combination
X1A1 + XA + -+ x, A,

of the columns of A equals b?

When the number m of equations and the number n of unknowns in system (1.2) are
equal, it is often the case that there is one unique answer for each of the variables x; (or,
equivalently, one unique vector x satisfying (1.3). Our main goal in the linear algebra
component of this course is to understand completely when (1.3) is and is not solvable,
how to characterize solutions when it is, and what to do when it is not.

One special instance of the case m = n is when A is nonsingular. In this case, if A7 lis
known, then the answer to question (I) is an immediate “yes”. Moreover, one may obtain
the (unique) solution of (1.3) (thus answering question (II)) via left-multiplication by AL

Ax=b = AlAx=A"
= Ix=A"b
= x=Ab.

20



1.4 Affine transformations of R?

Important Note: One should not think about the previous matrix-algebraic
steps in terms of dividing by a matrix (and it is complete nonsense to talk
about dividing by a vector!). One speaks, instead, of multiplying by the inverse
matrix, when that exists. Itis, moreover, extremely important to pay attention
to which side of an expression you wish to multiply by that inverse. Often
placing it on the wrong side yields a nonsensical mathematical expression!

In practical settings, however, A~ must first be found (if, indeed, it exists!) before we can
use it to solve the matrix problem. Despite the availability of the Ocrtave function inv(),
finding the inverse of a matrix is a very inefficient thing to do computationally, and quite
impossible when A~! does not exist. In the Section 1.5 we will look at Gaussian elimination
as a procedure for solving linear systems of equations. Gaussian elimination serves as a
foundation for the LU-factorization, which supplies us with a comprehensive method for
solving Ax = b whenever the matrix problem can be solved (even in cases where A~! does
not exist).

1.4 Affine transformations of R?

Suppose A is an m-by-n matrix. When we left-multiply a vector v € R” by such a matrix
A, the result is a vector Av € R™. In this section we will focus upon functions which take
inputs v € R” and produce outputs Av € R”. A function such as this could be given
a name, but we will generally avoid doing so, referring to it as “the function v — Av”.
When we wish to be explicit about the type of objects the input and output are, we might
write “(v = Av): R" — R™”, which points out that the function v = Av maps objects
from R" (inputs) to objects from R™ (outputs). But if the reader is informed that A is an
m-by-n matrix, he should already be aware that inputs/outputs to and from the function
v = Av are in R" and R" respectively.

In this subsection A will be understood to be a 2-by-2 matrix. Assuming this, it is the
case that (v — Av): R? — R2. We wish to focus our attention on the action of such a
function on the entire plane of vectors for various types of 2-by-2 matrices A.

1. Rotations of the plane. Our first special family of matrices are those of the form

(1.4)

cosa —sina
sinae cosa |’

for & € R. We know that points in the plane may be specified using polar coordinates,
so any vector v € R? may be expressed as v = (rcos 6, r sin 0), where (r, 6) is a polar
representation of the terminal point of v. To the see the action of A on a typical v,
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1 Solving Linear Systems of Equations

note that
cosa —sina||rcosO cosacos B —sinasin @
Av = ) . = ) .
sinae cosa ||rsin@ sina cos @ + cosasin O
_ |rcos(a+0)
~ |rsin(@+0) |

where we have employed several angle sum formulas® in the last equality. That
is, for an input vector v with terminal point (7, 0), the output Av is a vector with
terminal point (r,a + 6). The output is the same distance » from the origin as the
input, but has been rotated about the origin through an angle a. Thus, for matrices
of the form (1.4), the function v - Av rotates the entire plane counterclockwise (for
positive ) about the origin through an angle a. Of course, the inverse matrix would
reverse this process, and hence it must be

Al = [cos(—oz) —sin(—a)] _ [cos(a) sin(oc)]

sin(—a) cos(—a) —sin(a) cos(a)

2. Reflections across a line containing the origin.

First notice that, when

_ 1 0 _ 1 0| |0
e

Thus, for this special matrix A, v — Av maps points in the plane to their reflections
through the x-axis.

Now let u = (cos 9, sin 0) (i.e., u is a unit vector). Every line in the plane containing
the origin may be expressed as a one-parameter family L = {tu|t € R} of multiples
of u where 0 has been chosen (fixed, hence fixing u as well) to be an angle the line
makes with the positive x-axis. (Said another way, each line in IR? containing 0 is the
linear span of some unit vector.) We can see reflections across the line L as a series of
three transformations:

i) rotation of the entire plane through an angle (-0), so as to make the line L
correspond to the x-axis,

ii) reflection across the x-axis, and then

iii) rotation of the plane through an angle 6, so that the x-axis is returned back to
its original position as the line L.

“These trigonometric identities appear, for instance, in the box marked equation (4) on p. 26 of University
Calculus, by Hass, Weir and Thomas.
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1.4 Affine transformations of R?

These three steps may be affected through successive multiplications of matrices (the
ones on the left below) which can be combined into one:

[COS(Q) - sin(@)] [1 0 ] [ cos(6) sin(@)] B [cosa sina

sin(0) cos(0) [|0 -1|[-sin(0) cos(0)| ~ |sina —cosa

| as

where a = 20. That is, a matrix of the form

(1.6)

_ |cosa  sina
sina@ —cosa

will map points in the plane to their mirror images across a line that makes an angle
(a/2) with the positive x-axis.

. Scaling relative to the origin: perpendicular lines case. Suppose we wish to rescale
vectors so that the x-coordinate of terminal points is multiplied by the quantity s,
while the y-coordinates are multiplied by t. It is easy to see that multiplication by

the matrix
s 0
;9 i

R

It is, in fact, only slightly more complicated to do this in directions specified by any
pair of perpendicular lines, not just the x- and y-axes. It is left as an exercise to figure
out how.

would achieve this, since

. Translations of the plane. What we have in mind here is, for some given vector
w, to translate every vector v € IR? to the new location v + w. It is an easy enough
mapping, described simply in symbols by (v — v + w). Yet, perhaps surprisingly,
it is the one type of affine transformation (most affine transformations of the plane
are either of the type 1-4 described here, or combinations of these) which cannot be
achieved through left-multiplication by a 2-by-2 matrix. That is, for a given w # 0
in IR?, there is no 2-by-2 matrix A such that Av = v + w.

When this observation became apparent to computer programmers writing routines
for motion in computer graphics, mathematicians working in the area of projective
geometry had a ready answer: homogeneous coordinates. The idea is to embed
vectors from R? into R3. A vector v = (v1,v2) € R? is associated with the vector
Vv = (v1,v2,1) which lies on the plane z = 1in R3. Say we want to translate all vectors
v € R? by the (given) vector w = (a,b). We can form the 3-by-3 matrix

S = O
_ X

1
A = |0
0
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1 Solving Linear Systems of Equations

and multiply ¥ (not v itself) by A. Then the translated vector v + w is obtained from
AV by keeping just the first two coordinates.

We finish this section with two comments. First, we note that even though we needed
homogeneous coordinates only for the translations described in 4 above, it is possible to
carry out the transformations of 1-3 while in homogeneous coordinates as well. This is
possible because we may achieve the appropriate analog of any of the transformations 1-3
by multiplying ¥ by a 3-by-3 block matrix

A|O
=[]
where A is a 2-by-2 block as described in 1-3 above. You should convince yourself, review-
ing what we have said about multiplying matrices in blocks (Viewpoint 1in Section 1.3) as
needed, that, if ¥ is the homogeneous coordinates version of v, then BV is the homogeneous
coordinates version of Av.

The other note to mention is that, while our discussion has been entirely about affine
transformations on R?, all of the types we have discussed in 1-4 have counterpart trans-
formations on R”, when n > 2. For instance, if you take a plane in R containing the
origin and affix to it an axis of rotation passing perpendicularly to that plane through the
origin then, for a given angle a, there is a 3-by-3 matrix A such that rotations of points in
R3 through the angle a about this axis are achieved via the function (v — Av): R3 — RS,
The 3D analogs of transformations 2-3 may be similarly achieved via multiplication by
an appropriate 3-by-3 matrix. Only transformation 4 cannot, requiring, as before, that we
pass into one higher dimension (homogeneous coordinates for R*) and multiply by an
appropriate 4-by-4 matrix.

1.5 Gaussian Elimination

We have noted that linear systems of (algebraic) equations are representable in matrix
form. We now investigate the solution of such systems. We begin with a definition.

Definition 5: An m-by-n matrix A = (a;;) is said to be upper triangular if 2;; = 0
whenever i > j—that is, when all entries below the main diagonal are zero. When
all entries above the main diagonal are zero (i.e., 4;; = 0 whenever i < j), the A is
said to be lower triangular. A square matrix thatis both upper and lower triangular
is called a diagonal matrix.
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1.5 Gaussian Elimination

The system of linear equations

by
by

a11xy +apxs

az1X1 + anXxs

has two equations in two unknowns. The variables x; and x; represent potential degrees of freedom,
while the equations represent constraints. The solution(s) are points of intersection be-
tween two lines, and as such there may be none, precisely one, or infinitely many.

In real settings, there are usually far more than two variables and equations, and the
apparent number of constraints need not be the same as the number of variables. We
would like a general algorithm which finds solutions to such systems of equations when
solutions exist. We will develop a method called Gaussian elimination and, in the process,
look at examples of various types of scenarios which may arise.

1.5.1 Examples of the method

Example 5:
We begin simply, with a system of 2 equations in 2 unknowns. Suppose we wish to
solve
7x+3y =1 _ . 17 3 |1
3y = -6 or Ax=b, with A—[O 3] and b_[—6]'

The problem is very easy to solve using backward substitution—that is, solving the
equation in y alone,
3y = -6 = y=-2,

which makes the appearence of y in the other equation no problem:
1
7x+3(-2) =1 = X = ;(1+6):1.

We have the unique solution (1, —2). Notice that we can solve by backward substitution

because the coefficient matrix A is upper triangular.
u

Example 6:
The system

2x -3y =7 . trix f 2 =3|x| _ |7
3x 45y =1 or, in matrix form 3 5|yl T |1]

is only mildly more difficult, though we cannot immediately resort to backward
substitution as in the last example. Let us proceed by making this problem like that
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from the previous example. Perhaps we might leave the top equation alone, but alter
the bottom one by adding (-2/3) multiples of the top equation to it. In what follows,
we will employ the approach of listing the algebraic equations on the left along with a
matrix form of them on the right. Instead of repeating the full matrix equation, we will
abbreviate it with a matrix called an augmented matrix that lists only the constants in
the problem. By adding (-3/2) copies of the top equation to the bottom, our original
system
2x -3y =7 [2 —37]
or ,

3x+5y=1 3 5|1
becomes
2x—3y=7 2 3| 7
19/2)y = -19/2 0 19/2|-19/2 |

Now, as the (new) coefficient matrix (the part of the matrix lying to the left of the
dividing line) is upper triangular, we may finish solving our system using backward
substitution:
19 19
2V 7 v=h
SO
2x—-3(-1) =7 = x =7+3 =10.

Again, we have a unique solution, the point (10, —1).
[ |

Let’s pause for some observations. Hopefully it is clear that an upper triangular system

is desirable so that backward substitution may be employed to find appropriate values for
the variables. When we did not immediately have that in Example 6, we added a multiple
of the first equation to the second to make it so. This is listed below as number 3 of the
elementary operations which are allowed when carrying out Gaussian elimination, the
formal name given to the process of reducing a system of linear equations to a special
form which is then easily solved by substitution. Your intuition about solving equations
should readily confirm the validity of the other two elementary operations.

Elementary Operations of Gaussian Elimination

1. Multiply a row by a nonzero constant.

2. Exchange two rows.

3. Add a multiple of one row to another.

And what s this special form at which Gaussian elimination aims? Itis an upper triangular
form, yet not merely that. It is is a special form known as echelon form where the
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1.5 Gaussian Elimination

tirst nonzero entries in each row, below depicted by ‘p’s and asterisks, have a stair-step
appearance to them:

po* o x x x % % %
Opx—**x—***
O()Op*****
OOOOP****
0000000 p =

In fact, there may also be zeros where the asterisks appear. The ‘p’s, however, called
pivots, play a special role in the backward substitution part of the solution process, a role
that requires them to be nonzero. If you look back at the pivots in our first two examples
(the numbers 7 and 3 in Example 5; 2 and (19/2) in Example 6), you will see why they
must be nonzero—when we get to the backward substitution stage, we divide through by
these pivots. But, as the echelon form above depicts, the number of rows and columns of
a matrix does not tell you just how many pivots you will have. The pivot in one row may
be followed by a pivot in the next row (progressing downward) which is just one column
to the right; but, that next pivot down may also skip several columns to the right. The
final pivot may not even be in the right-most column. One thing for sure is that the pivots
must progress to the right as we move down the rows; all entries below each pivot must
be zero.

It is usually necessary to perform a sequence of elementary row operations on a given
matrix A before arriving at an echelon form R (another m-by-n matrix). It would violate
our definition of matrix equality to call A and R “equal”. Instead, we might say that R is
an echelon form for A (not “the” echelon form for A, as there is more than one), or that A
and R are row equivalent.

We turn now to examples of the process for larger systems, illustrating some different
scenarios in the process, and some different types of problems we might solve using it.
After stating the original problem, we will carry out the steps depicting only augmented
matrices. Since the various augmented matrices are not equal to their predecessors (in the
sense of matrix equality), but do represent equivalent systems of equations (i.e., systems
of equations which have precisely the same solutions), we will separate them with the ~
symbol.

Example 7:

Find all solutions to the linear system of equations

2x+y-z=3,
dx+2y+z=9.

As these two equations both represent planes in 3-dimensional space, one imagines
that there may either be no solutions, or infinitely many. We perform Gaussian
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elimination:

4 2 119 00 3|3

[2 1 —1'3] 21+ >0 |2 1 —1‘3]
The latter matrix is in echelon form. It has pivots, 2 in the 1tcolumn and 3 in
the 3™ column. Unlike previous examples, these pivots are separated by a column
which has no pivot. This 2" column continues to correspond to y-terms in the
system, and the absence of a pivot in this column means that y is a free variable. It
has no special value, providing a degree of freedom within solutions of the system.
The pivot columns (i.e., the ones with pivots), correspond to the x- and z-terms in
the system—the pivot variables; their values are either fixed, or contingent on the
value(s) chosen for the free variable(s). The echelon form corresponds to the system
of equations (equivalent to our original system)

2x+y-z=3,
3z=3.

Clearly, the latter of these equations implies z = 1. Since y is free, we do not expect to
be able to solve for it. Nevertheless, if we plug in our value for z, we may solve for x
in terms of the free variable y:

1 1
X = §(3+1—y) = Z—Ey.

Thus, our solutions (there are infinitely many) are
(xl ]/z Z) = (2 - ]//2/ ]// ]-) = (21 OI 1) + t(_]-/ 21 O) s
where t = y/2 may be any real number (since y may be any real number). Note that

this set S of solutions traces out a line in 3D space.
u

Before the next example, we make another definition.

Definition 6: The nullspace of an m-by-n matrix A consists of those vectors x € R"
for which Ax = 0. That is,

null (A) := {x€R"|Ax =0}.

A
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Example 8:
Find the nullspace of the matrix

2 1 -1
A= [4 2 1 ] '
That is, we are asked to find those vectors v € R3 for which Av = 0 or, to putitina

way students in a high school algebra class might understand, to solve

2x+y-z=0,
dx+2y+z=0.

Mimicking our work above, we have

21 -1]0 “2r1+1p >0 21 -1]0
4 2 1|0 00 ’

~

which corresponds to the system of equations

2x+y—-z=0,
3z=0.
Now, we have z = 0; y is again a free variable, so x = —%y. Thus, our solutions (again

infinitely many) are
(xl y/ Z) = (_]//2/ ]// 0) = t(_]-/ 2/ O) s

where t = y/2 may be any real number (since y may be any real number). Note that,
like the solutions in Example 7, this set of solutions—all scalar multiples of the vector
(=1,2,0)—traces out a line. This line is parallel to that of the previous example, but

unlike the other, it passes through origin (or zero vector).
u

Compare the original systems of equations and corresponding solutions of Examples 7
and 8. Employing a term used earlier to describe some linear ODEs, the system of
equations in Example 8 is said to be homogeneous as its right-hand side is the zero vector.
Its solutions form a line through the origin, a line parametrized by t. Since the vector on the
right-hand side of Example 7 is (9, 3) (not the zero vector), that system is nonhomogeneous.
Its solutions form a line as well, parallel to the line for the corresponding homogeneous
system of Example 8, but translated away from the origin by the vector (2,0,1) which,
itself, is a solution of the nonhomogeneous system of Example 7. We shall see similar
behavior in the solution of linear ODEs: when faced with a nonhomogeneous nth order
ODE (just an ODE to solve, not an initial-value problem), one finds the general solution of
the corresponding homogeneous problem, an n-parameter family of solutions, and then
adds to it a particular solution of the nonhomogenous problem.

We finish with an example of describing the column space of a matrix.
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1 Solving Linear Systems of Equations

Example 9:
Find the column (or range) space of the matrix

2 3 0 -1
1 0 3 1
A=l 51 2
1 0 3 1

A quick description of the column space of A is to say it is
Span({(zi 1/ _31 1)/ (3/ 0/ _5/ 0)/ (0/ 3/ 1/ 3)/ (_1/ 11 2/ 1)}) .

Since that is so easy, let’s see if we can give a more minimal answer. After all, there
may be redundancy in these columns.

Our plan of attack will be to assume that b = (b1, by, b3, bs) is in col(A) and solve
Ax = b via elimination as before. We have

2 3 0 -1 bk [ 1 0 3 1 | b
1 0 3 1 bz r &1 2 3 0 -1 b1
-3 -5 1 2| b3 ~ -3 51 2| b
1 0 3 1| by | 1 0 3 1 | by
rh—2r 51 [ 1 0 3 1 b,
3r1 +13 > 13 0 3 -6 -3 b1 - 2b2
~ 0 =5 10 5 | 3by+b3
Iy — 1 — 14 _O 0 0 0 b4—b2
10 3 1 by
(5/3)1‘2 +13 O1I13 03 -6 -3 by —2by
~ 00 0 0| (530 —(1/3)by+bs
00 0 O by — by

For determining the range space, we focus on the last two rows which say
5 1
0x7 +0xp + O0x3 + 0x4 = §b1—§b2+b3 or 0:5b1—b2+3b3,

and
0 =byg—0by.

These are the constraints which must be met by the components of b in order to be in
col(A). There are two constraints on four components, so two of those components
are “free”. We choose by = t, which means b, = t as well. Thus

1
b1 = g(t—?)bg,).
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1.5 Gaussian Elimination

If we take b3 = —5s — 3t, then by = 2t + 3s. (Admittedly, this is a strange choice for
bs. However, even if t is fixed on some value, the appearance of the new parameter s
makes it possible for b3 to take on any value.) So, we have that any b € col(A) must
take the form

2t + 3s 2 3
¢ 1 0

b= 55| = fl_3| |5/
t 1 0

where s, t are arbitrary real numbers. That is,
COI(A) = Span({(zl 1/ _3/ 1)/ (31 0/ _5/ 0)}) .

When we look back at the original matrix, these two vectors in the spanning set
for col(A) are precisely the first two columns of A. Thus, while we knew before we
started that col(A) was spanned by the columns of A, we now know just the first two
columns suffice.

We will return to this problem of finding col(A) in the next chapter, in which we
will see there is an easier way to determine a set of vectors that spans the columns

space.
u

1.5.2 Finding an inverse matrix

What would you do if you had to solve
Ax = b, and Ax = by,

where the matrix A is the same but b; # by? Of course, one answer is to augment the
matrix A with the first right-hand side vector b; and solve using Gaussian elimination.
Then, repeat the process with b, in place of by. But a close inspection of the process shows
that the row operations you perform on the augmented matrix to reach row echelon form
are dictated by the entries of A, independent of the right-hand side. Thus, one could
carry out the two-step process we described more efficiently if one augmented A with
two extra columns, by and b,. That is, working with the augmented matrix [A|b; by], use
elementary (row) operations 1.-3. until the part to the left of the augmentation bar is in
row echelon form. This reduced augmented matrix would take the form [R|c; 2], where
R is a row echelon form. Then we could use backward substitution separately on [R]c; ]
and [R|c;] to find solutions to the two matrix problems. Of course, if you have more than
2 matrix problems (with the same coefficient matrix), you tack on more than 2 columns.
This idea is key to findin the inverse of an n-by-n matrix A, when it exists. Let us denote
the standard vectorsin R" by e; = (1,0,...,0),e2 =(0,1,...,0),...,e, =(0,0,...,1). These
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1 Solving Linear Systems of Equations

are the columns of the identity matrix. We know the inverse B satisfies

e e e3 -+ ey
AB =
U !
Let by, by, ..., b, denote the columns of B. Then an equivalent problem to finding the
matrix B is to solve the n problems
Ab1:e1, Abzzez, Abn:en,

for the unknown vectors by, . .., b,. By the method above, we would augment A with the
full n-by-n identity matrix and perform elementary operations until the part to the left of
the augmentation line was in row echelon form. That is, we would reduce [A[I] to [R|C],
where C is an n-by-n matrix. (Note that if R does not have n pivots, then A is singular.)
We can then solve each of the problems

Rb;=c¢;, Rby=c¢;, ... Rb,=c¢,
using backward substitution, and arrive at the inverse matrix B putting the solutions
together:
b, by --- b,
B = .
[l l !

That’s a clever method, and it’s pretty much along the lines of how an inverse matrix is
found when it is really desired. However, in most cases, A lis just an intermediate find
on the way to solving a matrix problem Ax = b for x. If there is a more efficient way to
find x, one requiring fewer calculations, we would employ it instead. That is the content
of the next section.

1.6 LU Factorization of a Matrix

We have three ‘legal” elementary operations when using Gaussian elimination to solve the
equation Ax = b. We seek to put the matrix A in echelon form via a sequence of operations
consisting of

1. multiplying a row by a nonzero constant.
2. exchanging two rows.
3. adding a multiple of one row to another.

You may have noticed that, at least in theory, reduction to echelon form may be accom-
plished without ever employing operation 1. Let us focus on operation 3 for the moment.
In practice the multiplier is always some nonzero constant 8. Moreover, in Gaussian elim-
ination we are primarily concerned with adding a multiple of a row to some other row
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1.6 LU Factorization of a Matrix

which is below it. For a fixed B, let E;; = E;;(f) be the matrix that only differs from the

m-by-m identity matrix in that its (i, ]')th entry is f. We call E;; an elementary matrix. A
user-defined function written in OcTave code that returns such a matrix might look like
the following:

function emat = elementary(m, i, j, val)
emat = eye(mm);
emat(i,j) = val;

endfn

In Exercise 1.26 you are asked to show that

ai1 a2 tee a1,n
ai-1,1 ai-12 tee ai—1,n
Eij(B)A = |ai1 +pajy aip+pajo -+ ain +Pajy
ai+1,1 ai+1,2 cee Ait1n
Am,1 Am,2 ce Amn

In other words, pre-multiplication by E;; performs an instance of operation 3 on the matrix
A, replacing row i with (row i) +f (row j). Now, suppose a11 # 0. Then Ey;(—a21/a11)Ais a
matrix whose entry in its (2, 1) position has been made to be zero. More generally,

E, (—ﬂnl ) By (—ﬂ31 )E21 (—6121 ) A
a11 a11 a1

is the matrix that results from retaining the first pivot of A and eliminating all entries
below it. If our matrix A is such that no row exchanges occur during reduction to echelon
form, then by a sequence of pre-multiplications by elementary matrices, we arrive at an
upper-triangular matrix U. We make the following observations:

e Each time we perform elementary operation 3 via pre-multiplication by an elemen-
tary matrix E;j, it is the case that i > j. Thus, the elementary matrices we use are
lower-triangular.

e Each elementary matrix is invertible, and El._].1 is lower triangular when E;; is. See
Exercise 1.26.

e The product of lower triangular matrices is again lower triangular. See Exercise 1.28.

By these observations, when no row exchanges take place in the reduction of A to echelon
form, we may amass the sequence of elementary matrices which achieve this reduction
into a single matrix M which is lower-triangular. Let us denote the inverse of M by L, also
a lower-triangular matrix. Then

LM =1, while MA =1,
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1 Solving Linear Systems of Equations

where U is an upper-triangular matrix, an echelon form for A. Thus,
A = (LM)A = L(MA) = LU,

which is called the LU factorization of A, and
Ax = b = LUx=b.

Let y = Ux, so that Ly = b. Since L is lower-triangular, we may solve for y by a process
known as forward substitution. Once we have y, we may solve for Ux = y via backward
substitution as in the previous section.

But let us not forget that the previous discussion was premised on the idea that no row
exchanges take place in order to reduce A to echelon form. We are aware that, in some
instances, row exchanges are absolutely necessary to bring a pivot into position. As it
turns out, numerical considerations sometimes call for row exchanges even when a pivot
would be in place without such an exchange. How does this affect the above discussion?

Suppose we can know in advance just which row exchanges will take place in reducing
A to echelon form. With such knowledge, we can quickly write down an m-by-m matrix P,
called a permutation matrix, such that PA is precisely the matrix A except that all of those
row exchanges have been carried out. For instance, if we ultimately want the 1st row of A
to wind up as row 5, we make the the 5th row of P be (1,0,0,...,0). More generally, if we
want the i row of A to wind up as the jM row, we make the j row of P have a 1 in the
ih column and zeros everywhere else. To illustrate this, suppose

_ o O O
O O O
S = O O
SO = O

Then, for any 4-by-n matrix A, PA will be another 4-by-n whose 15trow is equal to the
20d row of A, whose 2" row equals the 4t row of A, whose 3™ row equals the 3t row of
A, and whose 4™ row equals the 15t row of A.

Now, the full story about the LU decomposition can be told. There is a permutation
matrix P such that PA will not need any row exchanges to be put into echelon form. It is
this PA which has an LU decomposition. That is, PA = LU.

Example 10:

In Ocrave, the following commands were entered with accompanying output:

octave:l1> A=[0 -1 3 1; 2 =11 4; 131 -1];
octave:2> [L,U,P] = lu(A)
L =

1.00000 0.00000 0.00000

0.50000 1.00000 0.00000

0.00000 -0.28571 1.00000
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1.6 LU Factorization of a Matrix

U=
2.00000 -1.00000 1.00000 4.00000
0.00000 3.50000 0.50000 -—=3.00000
0.00000 0.00000 3.14286 0.14286
P =
0 1 0
0 0 1
1 0 O

-
We will use it to solve the matrix equation Ax = b, with

0 -1 3 1 -1
A=12 -1 1 4 and b = |14].
1 3 1 -1 1

Since we have been given the LU decomposition for PA, we will use it to solve
PAx = Pb—that is, solve

2 -1 1 4 14
1 3 1 -1|x=|1
0 -1 3 1 -1
We first solve Ly = Pb, or®
1 0 0 14
1/2 1 Oy =|1
0 -2/7 1 -1

We call our manner of solving for y forward substitution because we find the com-
ponents of y in forward order, y; then > then ys.

=14,

1
5]/1+y2=1 =  yp=-6,

2 +yz3=-1 = -
7]/2 y3 - ]/3 - 7 7
soy = (14,-6,-19/7). Now we solve Ux =y, or
2 -1 1 4 14
0 7/2 1/2 Bix=| -6 |,
0 0 22/7 1/7 -19/7

3 Asking Ocrave to display 7 * L shows that this is an exact representation of L.
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1 Solving Linear Systems of Equations

via backward substitution. The result is infinitely many solutions, all with the form

73/11 ~17/11
_|-35/22 19/22
= |ci9/22| T c1jp2 |0 FER
0 1

Of course, it is possible to automate the entire process—not just the part of finding the
LU-factorization of A, but also the forward and backward substitution steps. And there
are situations in which, for a given coefficient matrix A, a different kind of solution process
for the matrix equation Ax = b may, indeed, be more efficient than using the factorization
LU = PA. The OcTtave command

octave> A \ b
ans =
2.30569
0.82917
-0.99101
2.80220

(with A and b defined as in the Example 10) is sophisticated enough to look over the
matrix A and choose a suitable solution technique, producing a result. In fact, the solution
generated by the command is one that lies along the line of solutions

X_(73 35 19 )+(1719 1) e R
S\117 227 227 11722 22"7)7 ’

found in Example 10, one occurring when t = 2.8022. This, however, reveals a shortcoming
of the ‘A \ b” command. It can find a particular solution, but when multiple solutions
exist, it cannot find them all.

1.7 Determinants

In a previous section we saw how to use Gaussian elimination to solve linear systems of
n equations in n unknowns. It is a process one can carry out without any knowledge of
whether the linear algebraic system in question has a solution o, if it does, whether that
solution is unique (central questions, as we have already seen, when studying initial value
problems for ODEs). So long as one knows what to look for, answers to these fundamental
questions do reveal themselves during the process. In this section, however, we investigate
whether something about the existence and/or uniqueness of solutions may be learned in
advance of carrying out Gaussian elimination.
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1.7.1 The planar case

Consider the case of two lines in the plane

ax+by = e

cx+dy = f. (1.8)

In fact, we know that intersections between two lines can happen in any of three different
ways:
1. the lines intersect at a unique point (i.e., solution exists and is unique),

2. the lines are coincident (that is, the equations represent the same line and there are
infinitely many points of intersection; in this case a solution exists, but is not unique),
or

3. the lines are parallel but not coincident (so that no solution exists).

Experience has taught us that it is quite easy to decide which of these situations we are in
before ever attempting to solve a linear system of two equations in two unknowns. For
instance, the system

9

3x =5y
-15

25
—5x+ —
X 3]/

obviously contains two representations of the same line (since one equation is a constant
multiple of the other) and will have infinitely many solutions. In contrast, the system

-1
5

x+2y
2x +4y

will have no solutions. This is the case because, while the left sides of each equation —
the sides that contain the coefficients of x and y which determine the slopes of the lines
— are in proportion to one another, the right sides are not in the same proportion. As a
result, these two lines will have the same slopes but not the same y-intercepts. Finally, the
system

11
-1

2x + 5y

x-y

will have just one solution (one point of intersection), as the left sides of the equations are
not at all in proportion to one another.

What is most important about the preceding discussion is that we can distinguish
situation 1 (the lines intersecting at one unique point) from the others simply by looking at
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1 Solving Linear Systems of Equations

the coefficients a, b, c and d from equation (1.8). In particular, we can determine the ratios
a:cand b :d and determine whether these ratios are the same or different. Equivalently,
we can look at whether the quantity

ad — bc

is zero or not. If ad — bc # 0 then the system has one unique point of intersection, but if
ad — bc = 0 then the system either has no points or infinitely many points of intersection.
If we write equation (1.8) as a matrix equation

¢ L[

we see that the quantity ad — bc is dependent only upon the coefficient matrix. Since this
quantity “determines” whether or not the system has a unique solution, it is called the
determinant of the coefficient matrix
a b
A=
[C d] '

and is sometimes abbreviated as det(A), |A| or

a b
c d|’

1.7.2 Calculating determinants for n-square matrices, with n > 2

While it is quite easy for us to determine in advance the number of solutions which arise
from a system of two linear equations in two unknowns, the situation becomes a good
deal more complicated if we add another variable and another equation. The solutions of
such a system

ax+by+cz = |
dx+ey+ fz = m (1.9)
ex+hy+kz = n

can be thought of as points of intersection between three planes. Again, there are several
possibilities:

1. the planes intersect at a unique point,
2. the planes intersect along a line,
3. the planes intersect in a plane, or

4. the planes do not intersect.
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1.7 Determinants

It seems reasonable to think that situation 1 can once again be distinguished from the other
three simply by performing some test on the numbers a,b,c,d, e, f,g,h and k. As in the
case of the system (1.8), perhaps if we write system (1.9) as the matrix equation

a b clfx|] |1

d e flly|=|m]|,
g h k||lz| |n

we will be able to define an appropriate quantity |A| that depends only on the coefficient
matrix
a b c
A=|d e f
g h k
in such a way that, if |A| # 0 then the system has a unique solution (situation 1), but if
|A| = 0 then one of the other situations (2—4) is in effect.
Indeed it is possible to define |A| for a square matrix A of arbitrary dimension. For our

purposes, we do not so much wish to give a rigorous definition of such a determinant as
we do wish to be able to find it. As of now, we do know how to find it for a 2 X 2 matrix:

ann a
det[|®11 @2|) _
a1 a2
For square matrices of dimension larger than 2 we will find the determinant using cofactor

expansion.
Let A = (a;j) be an arbitrary n X n matrix; that is,

a1 a12

= a11dz2 — ai124z1.
az1 a2

ailr diz -0 p

a1 dxp -+ Azp
A= .

anl a2 - Aun

We define the (i, j)-minor of A, M;;, to be the determinant of the matrix resulting from
crossing out the i row and the j column of A. Thus, if

1 -4 3
B=(-3 2 5|,
4 0 -1

we have nine possible minors Mi;; of B, two of which are

-4 3
0 -1

1 -4

M21=' 3 9

' =4 and M33 = ' ' = —10.
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A concept that is related to the (i, j)-minor is the (i, j)-cofactor, C;j, which is defined to be
Cij = (1) M.
Thus, the matrix B above has 9 cofactors C;j, two of which are
Coi = (-1)*>"'"My; =-4  and  Csx = (-1)*Mgzs = -10.
Armed with the concept of cofactors, we are prepared to say how the determinant of
an arbitrary square matrix A = (4;;) is found. It may be found by expanding in cofactors

along the i row:

n
det(A) = a1 Cin +apCip + -+ + 4y Ciyy = Z aikCig.
k=1
Or, alternatively, it may be found by expanding in cofactors along the j column:
n
det(A) = aljclj + aszz]- +--+ anan]- = Z ak]-Ck]-.
k=1
It is perhaps surprising that expansion in cofactors gives you the same final result re-
gardless of the row or column you choose. In practice, then, one usually chooses a row

or column that contains the most zeros. Expanding in cofactors along the third row, we
calculate the determinant of the 3 X 3 matrix B above as follows:

1 -4 3
detB)=|-3 2 5| = 4(-1)>*" 43 +(0)(=1)3*2 13 + (=1)(=1)>*3 1
2 5 -3 5 -3 2
4 0 -1
= 4-20-6)+0-(2-12) = -94.
If, instead, we expand in cofactors along the 2nd column, we get
-3 5 1 3 1 3
_ _ _1\14+2 _1)2+2 _1\3+2
qei®) = o7 S lracu), 3oyl ]
= 43-20)+2(-1-12)+0 = -94.

You should verify that expansions along other rows or columns of B yield the same result.
This process can be used iteratively on larger square matrices. For instance

3 2 0

3 (1) — 12 0 3 20
= 0)(-D*'|0 5 —4|+(0)(-1)*?*|-1 5 —4
110 -1 1 0 -1 1 0 -1
0 0 -3 1
3 1 0 3 12
+(=3)(-D*3 -1 0 —4|+ Q) (-D***|-1 0 5],
1 1 -1 1 10
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where our cofactor expansion of the original determinant of a 4 X 4 matrix along its fourth
row expresses it in terms of the determinants of several 3 X 3 matrices. We may proceed
to find these latter determinants using cofactor expansions as well:

3 1 0
10 -4 = eyl Tlrocy Tlrocye] Y
1 -1 1 -1 1 1
1 1 -1
= 30+4)-(1+4)+0
= 7,
where we expanded in cofactors along the first row, and
3 1 2
10 5 = 2L e ey
110 1 0 10 -1 5

= —(0-5+0-(15+2)
= -12,

where this cofactor expansion was carried out along the second column. Thus

3 1 2 0

-1 0 5 -4

11 0 -1° 0+0+3)7)+ (1)(-12) =09.
0 0 -3 1

Now consider the linear algebraic systems

X1 —4x, +3x3 = by 1 -4 3
-3x1+2x+5x3 = by whose coefficient matrix is -3 2 5
4x1 —X3 = bg, 4 0 -1

(i.e., the matrix B above), and

3x1+x+2x3 = b 3 1 2 0
—X 5% -4y = by whose coefficient matrix is 105 -4 .

X1 +xy—x4 = Dbj 1 1 0 -1

—3x3+x4 = b4 0O 0 -3 1

We have computed the determinants of both of these coefficient matrices and found them
to be nonzero. As in the case of planar linear systems (1.8), this tells us that both of these
systems have unique solutions. That is, if we write each of these systems in matrix form
Ax = b, with

X1 b

x = |X2 and b:bZ,
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then no matter what values are used for by, by, b3 (and by in the latter system), there is
exactly one solution for the unknown vector x = (x1, x2, X3, x4).

You should endeavor to develop proficiency in use of cofactor expansion to find deter-
minants. When you are not practicing this skill, however, you may rely on software or
a calculator to find determinants for you, particularly in the case of a square matrix with
n > 4 columns. In Octave the command that calculates the determinant of a matrix A is
det(A).

1.7.3 Some facts about determinants

Next, we provide some important facts about determinants. This is not a summary of
things demonstrated in the section, though perhaps some of them may seem intuitively
correct from what you have learned about computing determinants. The list is not ar-
ranged in a sequence that indicates a progression in level of importance though, for our
purposes, letter F is probably the most important.

A. The idea of the determinant of a matrix does not extend to matrices which are
non-square. We only talk about the determinant of square matrices.

B. If A, Baresquare matrices having the same dimensions, then det(AB) = det(A) det(B).

C. The determinant of an upper- (or lower-) triangular matrix A = (4;;) is the product
of its diagonal elements. That is, det(A) = aj1a - - - auy.

D. Suppose A, B are square matrices having the same dimensions and, in addition, B
has been obtained from A via one of the elementary row operations described in
Section 1.5. If B was obtained from A via

e row op 1 (multiplication of a row by a constant c), then det(B) = cdet(A).
e row op 2 (exchanging two rows), then det(B) = —det(A).

e row op 3 (adding a multiple of one row to another), then det(B) = det(A).
E. If any of the rows or columns of A contain all zeros, then |A| = 0.

F. The matrix A is nonsingular (i.e., A~! exists) if and only if |A| # 0. As a consequence,
the matrix problem Ax = b has a unique solution for all right-hand side vectors b
if and only if det(A) # 0. When det(A) = 0, there is not a single vector b for which
a unique solution x exists. As to which of the alternatives that leaves us—infinitely
many solutions x, or no solution x at all—that depends on the choice of b (i.e,,
whether b is in col(A) or not).
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1.7.4 Cramer’s Rule

Cramer’s rule provides a method for solving a system of linear algebraic equations for
which the associated matrix problem Ax = b has a coefficient matrix which is nonsingular.
It is of no use if this criterion is not met and, considering the effectiveness of algorithms we
have learned already for solving such a system (inversion of the matrix A, and Gaussian
elimination, specifically), it is not clear why we need yet another method. Nevertheless, it
is a tool (some) people use, and should be recognized/understood by you when you run
across it. We will describe the method, but not explain why it works, as this would require
a better understanding of determinants than our time affords.

So, let us assume the n-by-n matrix A is nonsingular, that b is a known vector in R",
and that we wish to solve the equation Ax = b for an unknown (unique) vector x € R".
Cramer’s rule requires the construction of matrices A1, Ay, ..., Ay, whereeachA;,1 < j<n
is built from the original A and b. These are constructed as follows: the jt column of A
is replaced by b to form A;.

Example 11: Construction of Aj, Ay, A3 when A is 3-by-3
Suppose A = (a;) is a 3-by-3 matrix, and b = (b;), then

by app ap a1 b a3 a aip by
Ap=|by axn axn|, Ax=laxn by ax|, and Az=|ay axn b|.
by a3y as a3 bz az3 a3 azx b

Armed with these A;, 1 < j <, the solution vector x = (x1, ..., x,) has its jth component
given by
|A
X i T TAar
Al
It should be clear from this formula why it is necessary that A be nonsingular.

i=1,2,...,n (1.10)

Example 12:
Use Cramer’s rule to solve the system of equations

x+3y+z—-w = -9
2x+y-3z+2w = 51
x+4y+2w = 31

-x+y+z-3w = -43
Here, A and b are given by
1 3 1 -1 -9 1 3 1 -1
2 1 -3 2 51 2 1 -3 2
A=l1 40 2f P=la| 0 W=l 4 o o =
-11 1 =3 —43 -11 1 =3
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Thus,
-9 3 1 -1
v - Al _ 1|51 1 -3 2| _ =230 _ 5
" JAl C JAl|31 4 0 2| T -46 ’
-43 1 1 -3
1 -9 1 -1
_ Mol 1]2 51 3 2| 6
Y= 7a T ;alll 31 o0 2| T a6 ’
-1 -43 1 -3
1 3 -9 -1
oo Al 121 sto2) 27
Al JA||1 4 31 2| T —46 ’
-1 1 -43 -3
1 3 1 -9
0 = A _ 112 1 -3 51| _ 506 _ .
Al ~ JA||1 4 0 31| T —46 ’
-1 1 1 -43

yielding the solution x = (x, y,z,w) = (5,1, -6, 11).

1.8 Linear Independence and Matrix Rank

We have defined the nullspace of an m-by-n matrix A as the set of vectors v € IR" satisfying
the equation Av = 0. In light of the discussion in Section 1.3, the components of any
v € null (A) offer up a way to write 0 as a linear combination of the columns of A:

(%1

02
0=Av = [ A |A | [A |7 | = A1 +02A0 + -+ 0,A, .

Un

For some matrices A, the nullspace consists of just one vector, the zero vector 0. We make
a definition that helps us characterize this situation.
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linearly independent.

with at least one of the coefficients ¢y, ..
is said to be linearly dependent. If, however, the only linear combination of the
vectors in S that yields 0 is the one with ¢y = ¢ = ---

Definition 7: Let S = {uy,uy,...u;} be a set of vectors in R™. If the zero vector
0 € IR” can be written as a linear combination

ciug +cup + -+ Cru = 0,

., cx nonzero, then the set S of vectors

= ¢, = 0, then set S is

Employing this terminology, when null (A) = {0} the set of columns of A are linearly

independent. Otherwise, this set is linearly dependent.

Suppose, as in Example 8, we set out to find the nullspace of A using Gaussian elim-
ination. The result of elementary row operations is the row equivalence of augmented

matrices

[Alo]~[R]|0],

where R is an echelon form for A. We know that v € null (A) if and only if v € null (R).

Let’s look at several possible cases:

1. Case: R has no free columns.
Several possible appearances of R are

and

0

0

0

0

(1.11)

(1.12)

Regardless of whether R has form (1.11) or form (1.12), the elements of v are uniquely
determined—there is no other solution to Rv = 0 but the one with each component
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1 Solving Linear Systems of Equations

vj =0for j=1,...,n. This means that null (R) = null (A) = {0} and, correspondingly,
that the columns of A are linearly independent.

2. Case: R has free columns.
A possible appearance of R is

p**** * ¥
000 p = -
000 0 p . ox

R=10000 0 p« (1.13)
000 0 O 0
000 0 0 - 0 0

The matrix R pictured here (as a “for instance’) has at least 3 free columns (the ond
3" and last ones), each providing a degree of freedom to the solution of Av = 0.
If the solution of Av = 0 has even one degree of freedom (one free column in an
echelon form of A), then the columns of A are linearly dependent.

It should be evident that the set of pivot columns of R are linearly independent. That
is, if we throw out the free columns to get a smaller matrix R of form (1.11) or (1.12),
then the columns of R (and correspondingly, those of A from which these pivot
columns originated) are linearly independent.

The number of linearly independent columns in A is a quantity that deserves a name.

Definition 8: The rank of an m-by-n matrix A, denoted by rank(A), is the number
of pivots (equivalently, the number of pivot columns) in an echelon form R for A.
The number of free columns in R is called the nullity of A, denoted by nullity (A).

Note that, for an m-by-n matrix, rank(A) + nullity (A) = n.
Now, suppose some vector b € span(S), where S = {uj, u, ..., ux} is some collection of
vectors. That is,
b = aquy + - +apug,

for some choice of coefficients ay, ...a;. If the vectors in S are linearly dependent, then
there is a choice of coefficients cy, . . . ¢, not all of which are zero, such that

cui+cu+---+cgu, = 0.
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1.8 Linear Independence and Matrix Rank

Let us assume that ¢, # 0. Solving this equation for uy, we get
1
e = —a(Clul ++ Ce1Ug)
which we may then plug back into our equation for b:
b = au+---+aq_1upq + apug
Ay
= muy+ -+ G U — a(clul + oot Cp1Ug-1)

arc1 axCo ApCx_
al—k— u + az—k— up + -t | — £inl Up—1,
Ck Ck Ck

which shows that, by taking d; = a; — axcj/ci for j = 1,...,k — 1, this b which was already
known to be a linear combination of uy, ..., uy may be rewritten as a linear combination
diuy +- - - +di_1u_1 of the reduced collection {uy, ..., u,_1}. Of course, if this reduced set of
vectors is linearly dependent, we may remove another vector—let us assume u,_; would
suit our purposes—to arrive at an even smaller set {uj, ..., ux_p} which has the same span
as the original set S, and continue in this fashion until we arrive at a subcollection of S
which is linearly independent. We have demonstrated the truth of the following result.

Theorem 2: Suppose S is a collection of vectors in IR”. Then some subset B of S
(that is, every vector in B comes from S, but there may be vectors in S excluded
from B) has the property that span(B) = span(S) and B is linearly independent.

The collection B is called a basis (a term we will define more carefully in a later section)
for span(S).

The previous theorem is an “existence” theorem, akin to the Existence/Uniqueness
theorems of Sections 2.4, 2.8 and 7.1 in the Boyce and DiPrima text; it tells you that
something exists without necessarily describing how to find it. But the text leading to the
theorem suggests a way—namely, we may build a matrix whose columns are the vectors
inS

A = [u1‘u2\--- ‘uk].
We may then reduce A to echelon form R (another matrix whose dimensions are the same
as A—there is no need to augment A with an extra column for this task), and take B to be
the set of columns of A—it may be all of them—which correspond to pivot columns in R.
The number of elements in B will be rank(A).

There is an important relationship between the value of nullity (A) and the number of
solutions one finds when solving Ax = b. You may already have suspected this, given the
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1 Solving Linear Systems of Equations

similarity of results in Examples 7 and 8, both of which involved the same matrix A. In
Example 8, we found null (A) to be the line of vectors passing through the origin in R?

t(-1,2,0), teR.
In Example 7, we solved Ax = (3,9), getting solution
2,0,1) + #(-1,2,0), teR,

another line of vectors in R?, parallel to the first line, but offset from the origin by the
vector (2,0, 1). One could describe this latter solution as being the sum of the nullspace of
A and a particular solution of Ax = b.* Observe that, if x, satisfies the equation Ax = b and
x, € null (A), then for v = x, + Xy,

Av = A(xy +x) = Axy+Ax, = b+0 =b.
Thus, when Ax = b has a solution, the number of solutions is at least as numerous as the

number of vectors in null (A). In fact, they are precisely as numerous, as stated in the next
theorem.

Theorem 3: Suppose the m-by-n matrix A and vector b € R" (both fixed) are such
that the matrix equation Ax = b is consistent (i.e., the equation has a solution).
Then the solutions are in one-to-one correspondence with the elements in null (A).
Said another way, if null (A) has just the zero vector, then Ax = b has just one
solution. If null (A) is a line (plane, etc.) of vectors, then so is the set of solutions to
Ax =b.

If you review Examples 7 and 8 you will see that the appearance of the free variable ¢
is due to a free column in the echelon form we got for A. The rank of A—its number of
linearly independent columns it has, is 2, not 3.

We finish this section with an important theorem. Some of these results have been stated
(in some form or other) elsewhere, but the theorem provides a nice overview of facts about
square matrices.

4This will be a theme in the course: whenever we have a nonhomogenous linear problem that is consistent
(i.e., has at least one solution), the collection of all solutions may be characterized as the sum of the
nullspace and any particular solution.
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1.9 Eigenvalues and Eigenvectors

Theorem 4: Suppose A is an n-by-n matrix. The following are equivalent (that is,
if you know one of them is true, then you know all of them are).

(i) The matrix A is nonsingular.

(ii) The matrix equation Ax = b has a unique solution for each possible n-vector

b.
(iii) The determinant det(A) # 0.
(iv) The nullspace null (A) = {0}.
(v) The columns of A are linearly independent
(vi) rank(A) = n.
(vii) nullity (A) =0.

1.9 Eigenvalues and Eigenvectors

The product Ax of a n-by-n real matrix (i.e., having real number entries) A and an n-vector x
is itself an n-vector. Of particular interest in many settings (of which differential equations
is one) is the following question:

For a given matrix A, what are the vectors x for which the product Ax is a
scalar multiple of x? That is, what vectors x satisfy the equation

Ax = Ax
for some scalar A?

It should immediately be clear that, no matter what A and A are, the vector x = 0 (that is,
the vector whose elements are all zero) satisfies this equation. With such a trivial answer,
we might ask the question again in another way:

For a given matrix A, what are the nonzero vectors x that satisfy the equation
Ax = Ax

for some scalar A?
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1 Solving Linear Systems of Equations

To answer this question, we first perform some algebraic manipulations upon the equation
Ax = Ax. We note first that, if I = I, (the n X n multiplicative identity matrix), then we can
write

Ax=Ax & Ax-Ax=0
& Ax-AIx=0
s (A-ADx=0.
Remember that we are looking for nonzero x that satisfy this last equation. But A— Al is an

n X n matrix and, should its determinant be nonzero, this last equation will have exactly
one solution, namely x = 0. Thus our question above has the following answer:

The equation Ax = Ax has nonzero solutions for the vector x if and only if the
matrix A — Al has zero determinant.

As we will see in the examples below, for a given matrix A there are only a few special
values of the scalar A for which A — AI will have zero determinant, and these special
values are called the eigenvalues of the matrix A. Based upon the answer to our question,
it seems we must first be able to find the eigenvalues A1, A5,... A, of A and then see about
solving the individual equations Ax = A;x foreachi=1,...,n.

Example 13:
Find the eigenvalues of the matrix A = [; _21]

The eigenvalues are those A for which det(A — AI) = 0. Now

sellp A]-afs 1) = sl 2[5 )

o PR-A 2
“ |5 -1-A

det(A — AI)

= 2-M)(=1-1)-10 = A?-A-12.

The eigenvalues of A are the solutions of the quadratic equation A2 —A 12 =0,
namely A; = =3 and A, = 4.

|

As we have discussed, if det(A — AI) = 0 then the equation (A — AI)x = b has either no

solutions or infinitely many. When we take b = 0 however, it is clear by the existence of

the solution x = 0 that there are infinitely many solutions (i.e., we may rule out the “no

solution” case). If we continue using the matrix A from the example above, we can expect

nonzero solutions x (infinitely many of them, in fact) of the equation Ax = Ax precisely
when A = =3 or A = 4. Let us procede to characterize such solutions.
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1.9 Eigenvalues and Eigenvectors

First, we work with A = —3. The equation Ax = Ax becomes Ax = —3x. Writing
X = ,
X2
and using the matrix A from above, we have

2 2 x| [2x1 + 2x
s AR

_ —3X1
—-3x = [—3362] .

while

Setting these equal, we get

2x1 + 2x7
5.7(1 — X2

= [—3x1] = 2x1 +2x = -3x and 5x1 —xp = =3x7
—33@

= bx; =-2x

2
= X1 = —gXZ.

This means that, while there are infinitely many nonzero solutions (solution vectors) of
the equation Ax = —3x, they all satisfy the condition that the first entry x; is —2/5 times
the second entry x,. Thus all solutions of this equation can be characterized by

S5

where t is any real number. The nonzero vectors x that satisfy Ax = —3x are called
eigenvectors associated with the eigenvalue A = —3. One such eigenvector is

[}

and all other eigenvectors corresponding to the eigenvalue (—3) are simply scalar multiples
of u; — that is, u; spans this set of eigenvectors.

Similarly, we can find eigenvectors associated with the eigenvalue A = 4 by solving
Ax = 4x:

4XZ

2x1 + 2x7
5x1 — x»

= [4X1:| = 2x1+2x =4x; and 5x1 —xp = 4xp
= X1 =X2.

Hence the set of eigenvectors associated with A = 4 is spanned by

wel]

Example 14:
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52

Find the eigenvalues and associated eigenvectors of the matrix

7 0 -3
A=(-9 -2 3
18 0 -8

We first find the eigenvalues, doing so by getting an expression for det(A — AI),
setting it equal to zero and solving:

7-A 0 -3

-9 -2-A 3
18 0 -8-A

(-2-1)(-D*

7—-A -3
18 -8-A4

= —Q+ M7 -A)(-8—-A)+54]
= —-A+2)A2+1-2) = —(A+2’(A-1).

Thus A has two distinct eigenvalues, A1 = =2 (its algebraic multiplicity, as a zero of
det(A — AI) is 2), and A3 = 1 (algebraic multiplicity 1).

To find eigenvectors associated with A3 = 1, we solve the matrix equation (A—I)v = 0
(that is, we find the nullspace of (A —I)). Our augmented matrix appears on the left,
and an equivalent echelon form on the right:

6 0 =30 2 0 -1|0
-9 -3 3|0 ~]02 10
18 0 -91|0 00 01O

Since the algebraic multiplicity of A3 is 1, the final bullet point on the previous page
indicates we should expect precisely one free column in the echelon form and, indeed,
the 3rd column is the free one. Writing x3 = 2¢, we have x; = t and x; = —¢, giving that

null(A-1I) = {#(1,-1,2)|t € R} = span({(1,-1,2)}).

That is, the eigenvectors associated with A3 = 1 form a line in R3? characterized by
(1,-1,2).

Now, to find eigenvectors associated with A; = —2 we solve (A +2I)v = 0. We know
going in that A; has algebraic multiplicity 2, so we should arrive at an echelon form
with either 1 or 2 free columns. We find that the augmented matrix

9 0 -3|0 30 -1(0
-9 0 3|/0|~]100 010
18 0 -6|0 00 010

Columns 2 and 3 are free, and we set xo = s, x3 = 3t. This means x; = ¢, and hence

null (A +2I) = {s(0,1,0) + #(1,0,3)|s,t € R} = span({(0,1,0),(1,0,3)}) .



1.9 Eigenvalues and Eigenvectors

So, the eigenvectors associated with A; = -2 form a plane in R3, with each of these
eigenvectors obtainable as a linear combination of (0, 1,0) and (1,0, 3).

It should not be surprising that commands are available to us in OcTavk for finding
the eigenpairs (collective way to refer to eigenvalue-eigenvector pairs) of a square

matrix. The relevant Octave code looks like this:
e

octave> A = [7 0 -3; -9 -2 3; 18 0 -8]

A =
7 0 -3
-9 -2 3
18 0 -8

octave> [V, lam] = eig(A)

V =
0.00000 0.40825 0.31623
1.00000 —0.40825 0.00000
0.00000 0.81650 0.94868
lam =
-2 0 0
0 1 0
0 0 -2
=
Compare the results with our analysis above.
|
Example 15:
Find the eigenvalues and associated eigenvectors of the matrix
-1 2
A= .
First, we have
-1-A 2 2
det(A—AI)—’ 0 —1—A'_(A+1)’

showing A = —1isaneigenvalue (the only one) with algebraic multiplicity 2. Reducing
an augmented matrix for (A — (=1)I), we should have either one or two free columns.
In fact, the augmented matrix is

0 21]0

0 001"

and does not need to be reduced, as itis already an echelon form. Only its first column
is free, so we set x; = t. This augmented matrix also tells us that x, = 0, so

null(A+1I) = {#(1,0)|t € R} = span({(1,0)}) .
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Note that, though the eigenvalue has algebraic multiplicity 2, the set of eigenvectors
consists of just a line in R? (a one-dimensional object), the scalar multiples of (1, 0).

Compare this work with software output:
-

octave> [V, lam] = eig([-1 2; 0 -1])

V =
1.00000 -—1.00000
0.00000 0.00000

lam =
-1 0
0 -1

- m

What is new in this last example is that we have an eigenvalue whose geometric multi-
plicity, the term used for the corresponding number of linearly independent eigenvectors
(also known as nullity (A — AI)), is smaller than its algebraic multiplicity.

Example 16:
Find the eigenvalues and associated eigenvectors of the matrix
2 -1
a-f )
We compute

det(A — AI) = ‘ 2-4 -

_ YA _ 12 _
) Z_A‘_(A 22+1 = A2—41+5.

The roots of this polynomial (found using the quadratic formula) are A; = 2 +i and
Ay = 2 —1i; that is, the eigenvalues are not real numbers. This is a common occurrence,
and we can press on to find the eigenvectors just as we have in the past with real
eigenvalues. To find eigenvectors associated with A1 = 2 + 7, we look for x satisfying

A-Q2+)Dx=0 = [_11 j] [2]:[8] - [;ifl__ix’;z]=|8] = x=in.

Thus all eigenvectors associated with A; = 2 + i are scalar multiples of u; = (i, 1).
Proceeding with A, = 2 — i, we have

T e

which shows all eigenvectors associated with A, = 2 — i to be scalar multiples of
u = (—i,1).
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Notice that up, the eigenvector associated with the eigenvalue A, = 2 — i in the
last example, is the complex conjugate of u;, the eigenvector associated with the
eigenvalue A1 = 2 +i. It is indeed a fact that, if an m-by-n real matrix A has a nonreal
eigenvalue A1 = A + iy with corresponding eigenvector &1, then it also has eigenvalue
Az = A — iy with corresponding eigenvector & = &;.

The relevant software commands that parallel our work look like this:

~
octave> [V, lam] = eig([2 -1; 1 2])
V =
0.70711 + 0.000001 0.70711 — 0.000001
0.00000 — 0.707111i 0.00000 + 0.707111i

lam =
2 + 1i 0+ 0i
0 + 01 2 — 1i

To sum up, our search for eigenpairs of A consists of
1. finding the eigenvalues, all roots of the polynomial det(A — AI), then

2. for each eigenvalue A, finding a linearly independent set of corresponding eigenvec-
tors that spans the nullspace of A — AL For a given A, the number of vectors in this
minimal spanning set is equal to nullity (A — AI).

Some remarks:

o If nis the number of rows/columns in A, then the quantity det(A — AI) is (always) an
nth -degree polynomial. Hence it has, counting multiplicities, exactly 1 roots which
are the eigenvalues of A.

o If A is upper or lower triangular, its eigenvalues are precisely the elements found on
its main diagonal.

e Even if the problems we consider have corresponding matrices A with real-number
entries, the eigenvalues of A may be non-real (complex). However, such eigenvalues
always come in conjugate pairs—if (a + bi) is an eigenvalue of A, then so is (a — bi).

e Once we know the eigenvalues, the search for eigenvectors is essentially the same as
Example 8. For each eigenvalue A, we find the nullspace of a certain matrix, namely
(A = AI). In each instance, when you reduce (A — AI) to echelon form, there will be at
least one free column, and there can be no more free columns than the multiplicity
of A as a zero of det(A — AI). Thus, the geometric multiplicity of A, also known as
nullity (A — AI), must lie between 1 and the algebraic multiplicity of A.
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Though these examples, and the observations taken from them, leave open a number
of possibilities involving nonreal eigenvalues and geometric multiplicities that are strictly
less than algebraic ones, there is one special type of square matrix we mention here for
which the outcome is quite definite. We give the result as a theorem.

Theorem 5 (Spectral Theorem for Symmetric Matrices): Suppose A is a symmet-
ric matrix (i.e., AT = A) with real-number entries. Then

e each eigenvalue of A is a real number, and
e each eigenvalue has geometric multiplicity equal to its algebraic multiplicity.

We describe this latter situation by saying that A has a full set of eigenvectors.

In Section 1.4, we investigated the underlying geometry associated with matrix mul-
tiplication. We saw that certain kinds of 2-by-2 matrices transformed the plane R? by
rotating it about the origin; others produced reflections across a line. Of particular inter-
est here is Case 3 from that section, where the matrices involved caused rescalings that
were (possibly) different along two perpendicular axes. Now, using our knowledge of
eigenpairs, we can discuss the general case where these axes may not be perpendicular.

Recall that an eigenpair (A, v) of A satisfies the relationship Av = Av. This says that the
output Av (from the function (x = Ax)) corresponding to input v is a vector that lies in
the “same direction” as v itself and, in fact, is a predictable rescaling of v (i.e., it is A times
V).

Example 17:

Suppose A is a 2-by-2 matrix that has eigenvalues A1 = 2, A, = 3 with corresponding
eigenvectors u; = (1,0), up = (1/ V2,1/ \/E). The matrix

2 1
“-[f s
is just such a matrix, and the associated function (x +— Ax) rescales vectors in the
direction of (1,0) by a factor of 2 relative to the origin, while vectors in the direction
of (1,1) will be similarly rescaled but by a factor of 3. (See the figure below.) The
affect of multiplication by A on all other vectors in the plane is more complicated to
describe, but will nevertheless conform to these two facts. The figure shows (on the
left) the unit circle and eigenvectors u;, up of A. On the right is displayed how this

circle is transformed via multiplication by A. Notice that Au; faces the same direction
as uy, but is twice as long; the same is true of Au; in relation to uy, except it is 3 times
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as long. The figure displays one more unit vector w along with its image Aw under
matrix multiplication by A.

PR B

Aw

We leave it to the exercises to discover what may be said about the eigenvalues of a
2-by-2 matrix A when the associated function (x — Ax) rotates the plane about the origin.
We also investigate similar ideas when A is a 3-by-3 matrix.
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Exercises

1.1 Give a particularly simple command in Octave (one which does not require you to
type in every entry) which will produce the matrix

00 3 0
ylooos
Y10 00 0
0 00 0
0 -1 00 0
00 20 0
pl2 0 01 0
0 7 00 -4
0 0 10 0
11

1 1

S PR

3 2

1.2 Suppose A is a 5-by-3 matrix.

a) If B is another matrix and the matrix product AB makes sense, what must be true
about the dimensions of B?

b) If the matrix product BA makes sense, what must be true about the dimensions of
B?

1.3 Suppose A, B are matrices for which the products AB and BA are both possible (both
defined).

a) For there to be any chance that AB = BA, what must be true about the dimensions
of A? Explain.

b) When we say that AB # BA in general, we do not mean that it never happens, but
rather that you cannot count on their equality. Write a function in Octave which,
when called, generates two random 3-by-3 matrices A and B, finds the products AB
and BA, and checks whether they are equal. Run this code 20 times, and record how
many of those times it happens that AB = BA. Hand in a printout of your function.

c) Of course, when both A and B are square matrices with one of them equal to the
identity matrix, it will be the case that AB = BA. What other instances can you think
of in which AB = BA is guaranteed to hold?

58



1.9 Eigenvalues and Eigenvectors

1.4 Verity, via direct calculation, Theorem 1. Thatis, use the knowledge that A, B are n-by-n
nonsingular matrices to show that AB is nonsingular as well, having inverse B-1A~!.

1.5 We have learned several properties of the operations of inversion and transposition of
amatrix. The table below summarizes these, with counterparts appearing on the same row.

matrix transposition matrix inversion
i. AhHT =A A H1T=A
ii. (AB)T = BTAT (AB)"! =B 1A"!

iii. (A+B)=AT+BT
Show that property iii. has no counterpart in the “matrix inversion” column. That is, in

general it is not the case that (A + By l=AT1+B

1.6 The previous two problems asked you to “prove” or “show” (basically synonymous
words in mathematics) something. Yet there is something fundamentally different about
what is required in the two problems. In one problem, all you need to do is come up
with a specific instance—matrices A, B whose entries are concrete numbers—to prove the
assertion. In the other problem, if you resort to specific matrices then all you succeed in
doing is showing the assertion is true in one particular instance. In which problem is it
that you cannot get specific about the entries in A, B? What is it in the wording of these
problems that helps you determine the level of generality required?

1.7
a) Explain why it is necessary that a symmetric matrix be square.
b) Suppose A = (a;j) is an n-by-n matrix. Prove that A is symmetric if and only if a;; = a;;

foreach1 <i,j<n.

1.8 Suppose there is a town which perenially follows these rules:

e The number of households always stays fixed at 10000.

e Every year 30 percent of households currently subscribing to the local newspaper
cancel their subscriptions.

e Every year 20 percent of households not receiving the local newspaper subscribe to
it.

a) Suppose one year, there are 8000 households taking the paper. According to the data
above, these numbers will change the next year. The total of subscribers will be

(0.7)(8000) + (0.2)(2000) = 6000,
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and the total of nonsubscribers will be
(0.3)(8000) + (0.8)(2000) = 4000 .

If we create a 2-vector whose first component is the number of subscribers and
whose 2nd component is the number of nonsubscribers, then the initial vector is
(8000,2000), and the vector one year later is

0.7 0.2/(8000| _ [6000
0.3 0.8/|2000 ~ [4000(
What is the long-term outlook for newspaper subscription numbers?

b) Does your answer above change if the initial subscription numbers are changed to
9000 subscribing households? Explain.

1.9 In Ocravg, generate 50 random 4-by-4 matrices. Determine how many of these matrices
are singular. (You may find the command det() helpful. It’s a simple command to use,
and like most commands in Octave, you can find out about its use by typing help det.
You may also wish to surround the work you do on one matrix with the commands for
i = 1:50 and end.) Based upon your counts, how prevalent among all 4-by-4 matrices
would you say that singular matrices are? What if you conduct the same experiment on
5-by-5 matrices? 10-by-10? (Along with your answers to the questions, hand in the code
you used to conduct one of these experiments.)

1.10 Consider a matrix A that has been blocked in the following manner:

A = A |Ap [Ag
Ay |Ap | Az |

where Ay is 2-by-3, Az is 4-by-2, and the original matrix A has 7 columns.
a) How many rows does A have?
b) Determine the dimensions of the submatrices A1, A1z, Ay1, and Aoo.

o) Give at least three different ways to partition a matrix B that has 5 columns so that
a block-multiplication of the matrix product AB makes sense. For each of your
answers, specify the block structure of B using B;; notation just as we originally gave
the block structure of A, and indicate the dimensions of each block.

d) For each of your answers to part (c), write out the corresponding block structure of
the product AB, indicating how the individual blocks are computed from the blocks
of A and B (as was done in the notes immediately preceding Example 3).
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1.11

a) Suppose A is a 4-by-n matrix. Find a matrix P (you should determine appropriate
dimensions for P, as well as sEecify its entries) so that PA has the same entries as
A but the 15t, 2nd  3tdand 4throws of PA are the 204, 4th  3rdang 15trows of A
respectively. Such a matrix P is called a permutation matrix.

b) Suppose A is an m-by-4 matrix. Find a matrix P so that AP has the same entries as
A but the 18t, 2nd 3td and 4t colymns of AP are the 204, 4th 31d and 15t columns of
A respectively.

¢) Suppose A is an m-by-3 matrix. Find a matrix B so that AB again has 3 columns,
the first of which is the sum of all three columns of A, the 2"?is the difference of the
18tand 3™ columns of A (column 1 - column 3), and the 3" column is 3 times the
15t column of A.

1.12 We have given two alternate ways of achieving translations of the plane by a vector
w = (a,b):

(i) (v v+w), and

(ii) (v V> AV), where A =

(el Nan R

0
1
0

=S _

If v € R? has homogeneous coordinates ¥ € IR?, use the indicated blocking on A in (ii) and
what you know about block multiplication to show that the upper block of AV gives the
same result as the mapping in (i).

1.13

a) Multiply out the matrices on the left-hand side of (1.5) to show that, indeed, they are
equal to the matrix on the right-hand side for a = 20.

b) Show that a matrix in the form (1.6) may be expressed in an alternate form

a?—b%>  2ab
2ab b -a?|’
for some choice of constants a, b such that a% + b* = 1.

1.14 Determine which of the following is an echelon form. For those that are, indicate
what are the pivot columns and the pivots.
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0216 5 -1
yjo0o032 7
Y100 0001 0
00000 2
2 7 3 -1 -5
11 1 4 2
0 2 3 5 1
Dy 021 -1 7
00 0 -3 5
0 0 0 0 1
)'1000
“looso

1 0 0 0
d)_oooo]
e)[1428]

1 0 -2 3
0 2 3 -1
Blo 0 1 2
0 -1 0 5

1.15 Use backward substitution to solve the following systems of equations.

X1—3XQ = 2

a) 2% = 6

X1 +x+x3 = 8
b) 2xp+x3 = 5
3X3 =9

X1 +2x+2x3+x4 = 5
3xp + x3 — 2x4

—Xx3 + 2x4

4X4 = 4

Il
—_

<)

Il
|
—_

1.16 Write out the system of equations that corresponds to each of the following aug-
mented matrices.

y[3 28
V11 5|7
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[5 —2 1|3
b)23—40
2 1 4|-1
ol4 -2 3|4
5 2 6|-1

1.17 Suppose we wish to perform elementary operation 3 on some matrix A. That is, we
wish to produce a matrix B which has the same dimensions as A, and in most respects is
identical to A except that

(row i of B) = (row i of A) + f(row jof A) .
If A is m-by-n, then B = E;;A, where E;; is the m-by-m elementary matrix

1

1

which looks just like the m-square identity matrix I, except for the entry  appearing in
its i row, /' column. Ocrave code for producing such a matrix might look like

function elementaryMatrix = emat(m, i, j, val)
elementaryMatrix = eye(m,m);
elementaryMatrix(i,j) = val;

end

a) Create a text file containing the code above and called emat .m. Place this file in your
working directory, the one you are in when running OcTtave (or MATLAB).

b) Another list of commands to put into a file, call it simpleGE.m, is the following:

B = A;

numRows = size (B)(1);
numCols = size (B)(2);
currRow = 1;

currCol = 1;

while ((currRow < numRows) && (currCol < numCols))
while ((abs(B(currRow, currCol)) < 107°(-10)) && (currCol < numCols))
B(currRow, currCol) = 0;
currCol = currCol + 1;
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end

if (currCol < numCols)
pivot = B(currRow, currCol);
for ii = (currRow + 1):numRows
B = emat(numRows, ii, currRow, —-B(ii,6 currCol)/pivot) = B;
% Remove the final semicolon in the previous line
% if you would like to see the progression of matrices
% from the original one (A) to the final one in echelon form.

end
end
currRow = currRow + 1;
currCol = currCol + 1;
end
B

-

One would run simpleGE after first storing the appropriate coefficients of the linear system
in an augmented matrix A.

Save the commands above under the filename simpleGE.m in your working directory.
Then test it out on the matrix (assumed to be already augmented)
2 5
6 1].
3

NN W
= Q=

1
A = |3
6

=
N

If you have arranged and entered everything correctly, the result will be the matrix in
echelon form

1 3 2 1 5
0 -7 0 0 -14).
0 0 0 -2 5

1.18 Using simpleGE (see Exercise 1.17) as appropriate, find all solutions to the following
linear systems of equations:

2x—z = -4
a) —4x-2y+z = 11
2x+2y+5z = 3
X1 +3x+2x3+x4 = 5
b) 3x1+2x+6x3+3x4 = 1
6x1+2x +12x3+4x4 = 3
x+3y = 1
¢ —x-y+z =5
2x+4y-z = -7
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1.19 Using simpleGE (see Exercise 1.17) as appropriate, find all solutions to the following

linear systems of equations:

x+y
x—=7y—12z
3x—y—>5z
2x +4y +3z
x—y—-3z

1.20 Find choices of constants c1, ¢; and ¢3 such that b = ¢;v; + covy + c3vs. Thatis, write b
as a linear combination of vy, v3, and v3. If there is only one such linear combination, state
how you know this is so. Otherwise, your answer should include all possible choices of

the constants c¢1, ¢; and cs3.

a) vi =(1,3,-4),v2=(0,1,2),v3 = (-1,-5,1), b = (0, -5, —6).

b) V1= (1/ 2/ O)/ Vo = (21 3/ 3)/ V3 = (_1/ 1/ _8)1 b = (51 9/ 4)

C) V] = (1/ 0/ 3/ _2)/ Vy = (0/ 1/ 2/ _1)/ V3 = (31 _4/ 1/ _2)/ b= (11 _5/ _71 3)

1.21

a) For each given set of matrices, show that they commute (i.e., can be multiplied in any
order and give the same answer; find an easy way if you can), and find the product
of all matrices in the set. (A missing entry should be interpreted as a zero.)

(i)

(ii)

(iii)

by

14

b) Describe as precisely as you can what characterizes the sets of matrices in (i)—(iii) of
part (a). (Each is the set of all matrices which ...)

¢) State and prove a general result for n-by-n matrices, of which (i)-(iii) above are

special cases.
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1.22 Find the nullspace of the matrix

1 2 3 4 3
3 6 18 9 9
A=12 4 6 2 6f.
4 8 12 10 12
5 10 24 11 15
1.23 Consider the system of linear equations
X1+3x+2x3—x4 = 4
—x1—xp—3x3+2x4 = -1
2x1+8xp +3x3+2x4 = 16
X1 +xp)+4x3+x4 = 8.

a) Determine the associated augmented matrix for this system. Run simpleGE on this
matrix to see that the algorithm fails to put this augmented matrix into echelon form.
Explain why the algorithm fails to do so.

b) Though this would not normally be the case, the output from simpleGE for this
system may be used to find all solutions to the system anyway. Do so.

1.24 Solve the two linear systems

X1 +2x—2x3 = 1 X1 +2x—2x3 = 9
2x1+5x+x3 = 9 and 2x1+5x+x3 = 9
X1 +3x+4x3 = 9 X1 +3x+4x3 = -2

by doing elimination on a 3-by-5 augmented matrix and then performing two back sub-
stitutions.

1.25 A well-known formula for the inverse of a 2-by-2 matrix

_la b . a1 1 d -b
A—|C d] is A _ad—bc[—c a]'
Use Gaussian elimination (do it by hand) on the matrix A above to derive this formula
for the inverse matrix A~!. Handle separately the following cases: I) a # 0, II) a = 0 but

¢ # 0, and III) both 4, ¢ = 0. What does a nonzero determinant for A have to do with
nonsingularity in this case?

1.26 Show that the elementary matrix E;; of Exercise 1.17 is invertible, and find the form
of its inverse. You may assume, as is always the case when such elementary matrices are
used in Gaussian elimination, thati > ;.

1.27
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Suppose
1 00 1 0 O
A1 = 1d 10 and A2 =10 1 0].
asi 01 0 asn 1

Find a general expression (give the entries) for each of

i) A1A2 (iii) ArA;
(i) (A1A2)7! (iv) (A2Aq)7!
Suppose
1 000 1 00 1 0 0 O
_laz1 1 0 0 101 00 01 0 0
A=l o010 A0 ap 10 ™ ATl o 1 of
as 0 01 0 agn 01 00 as3 1

Find a general expression (give the entries) for each of

(i) A1A2A3 (iii) AzAz2Aq
(i) (A1A2A5)7 (iv) (AsAz2A;)™!

What special feature does the calculation of AjA; and (AzA1)7! (in part (a)) and
A1AsA3 and (A3AzA)7! (in part (b)) have? State the corresponding result for arbi-
trary n > 2.

1.28 Prove that the product of lower triangular matrices is again lower triangular.

1.29

a)

b)

We know that two points in a plane determine a unique line. When those points are
not located at the same x-coordinate, the line will take the form

p(x)=mx+b,

a polynomial of degree at most one. Under what conditions on the points would
this really be a polynomial of degree zero?

If you remember anything about your study of Simpson’s Rule in calculus, you may
suspect that, when three points no two of which share the same x-coordinate are
specified in the plane, there is a unique polynomial

p(x) = ax* +bx+c,
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having degree at most 2, that passes through the three points. This statement is,
indeed, true. One might say the polynomial p interpolates the given points, in that
it passes through them filling in the gaps between.

i. Write the similar statement that applies to a set of n points in the plane, no two
of which share the same x-coordinate.

ii. Consider the problem of finding the smallest degree polynomial that interpo-
lates the n points (x1, y1), (x2, y2), . . ., (X4, yn) in the plane. Once the coefficients
ap, a1, ..., 0,_1 of

p(x) = ap+a1x + x>+ ..+ a7t
are found, we are done. The information we have at our disposal to find these
coefficients is that

px)=vy1, p2)=y2, .., pxn)=Yn-

That is, we have n equations to determine the n unknowns. Find the matrix B
so that the problem of finding the coefficients of p is equivalent to solving the
matrix problem

ap n
a 2

B .y
Ap—1 Yn

¢) Use Octave and your answer to the previous part to find the coefficients of the
polynomial that interpolates the six points (-2, —63), (-1, 3), (0, 1), (1, -3), (2,33), and
(3,367).

1.30 Below we have the output from Octave’s 1u() command for a particular matrix.

octave> A = [6 -4 5; -4 3 1; 2 -1 1];
octave> [L, U, P] = lu(A)
L =
1.00000 0.00000 0.00000
—-0.66667 1.00000 0.00000
0.33333 1.00000 1.00000
U =
6.00000 —4.00000 5.00000
0.00000 0.33333 4.33333
0.00000 0.00000 -5.00000
P =
1 0 0
0 1 0
0 0 1
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Use it (and not some other means) to find all solutions to the linear system of equations

6x—4y+5z = -10
—“4x+3y+z = -1
2x-y+z = -1.

1.31 Below we have the output from Ocrave’s lu() command for a particular matrix.

octave> [L, U, P] = lu([1 -2 3; 1 -4 -7; 2 =5 1])
L =
1.00000 0.00000 0.00000
0.50000 1.00000 0.00000
0.50000 -0.33333 1.00000
U =
2.00000 —5.00000 1.00000
0.00000 -1.50000 -7.50000
0.00000 0.00000 0.00000
P =
0 0 1
0 1 0
1 0 0

Use it (and not some other means) to find all solutions to the linear system of equations

x-2y+3z = -13
x—4y-7z = 1
2x-5y+z = -19.

1.32 Suppose A is an m-by-n matrix. Explain why it is not possible for rank(A) to exceed
m. Deduce that rank(A) cannot exceed the minimum value of m and n.

1.33 Give an example of an m-by-n matrix A for which you can tell at a glance Ax = b
is not always consistent—that is, there are right-hand side vectors b € R™ for which no
solution exists.

1.34 Let
1 21 1 2
-1 3 0 2 -2
A= 0 1 1 3 4
1 2 5 13 5

a) Use Gaussian elimination (you may use simpleGE, or the (better) alternative called
rref()) to find the rank and nullity of A.

b) Find a basis for the column space of A.
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c) State another way to phrase the question of part (b) that employs the words “linear
independent” and “span”.

1.35 Suppose A is an m-by-n matrix, with m > n and null (A) = {0}.

a) Are the column vectors of A linearly independent? How do you know?

b) How many solutions are there to the matrix equation Ax = b if b € col(A)?

¢) How many solutions are there to the matrix equation Ax = b if b ¢ col(A)?
1.36 Can a nonzero matrix (i.e., one not completely full of zero entries) be of rank 0?
Explain.

1.37 We know that, for an m-by-1 vector u and 1-by-n matrix (row vector) v, the
matrix product uv is defined, yielding an m-by-n matrix sometimes referred to as the
outer product of u and v. In Section 1.3 we called this product a rank-one matrix. Explain
why this term is appropriate.
1.38 Determine whether the given set of vectors is linearly independent.

a) $=1{3,2,51,-2),(5,5-2,0,1),(2,2,6,-1,-1),(0,1,4,1,2)}

b) $={3,6,4,1),(-1,-1,2,5),(2,1,3,0),(6,13,0,-8)}

3 6 4 1

. o -1 -1 2 5

1.39 For the matrix A, find its nullspace: A = > 1 3 0
6 13 0 -8

1.40 Ocrave has a command rank () which returns a number it thinks equals the rank of
a matrix. (Type help rank to see how to use it.) The command can be used on square and
non-square matrices alike. Use Octave commands to find both the rank and determinant
of the following square matrices:

'3 3 0 -1 3
(2 5 -5 -4 2 1 1 5
@l7 o 7 Gi) |1 -1 -4 -5 -2
-4 7 0 4 3 -3 1 0
] (1 5 5 4 1
-10 0 5 7
(i) -5 3 -39 -6 5 6 -7 -2
7 7 -16 4 -7 -2 5 5
0 -9 -3 1 v) |2 -2 4 -2 3
-10 12 8 -12 -7
| -8 3 10 -9 1
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Using these results, write a statement that describes, for square matrices, what knowledge
of one of these numbers (the rank or determinant) tells you about the other.

1.41 Theorem 4 tells of many things one can know about a square matrix when is has
full rank—that is, rank(A) = n for a matrix A with n columns. Look back through that
theorem, and determine which of the conditions (i)—(vii) still hold true when A is non-
square but has full rank.

1.42 Here is a quick tutorial of how one might use OcTave to produce the circle and oval
in the figure from Example 17. First, to get the circle, we create a row vector of parameter
values (angles, in radians) running from 0 to 27 in small increments, like 0.05. Then
we create a 2-row matrix whose 1%trow holds the x-coordinates around the unit circle
(corresponding to the parameter values) and whose 2" row contains the corresponding
y-coordinates. We then plot the list of x-coordinates against the list of y-coordinates.

octave> t = 0:.05:2%pi;

octave> inPts = [cos(t); sin(t)];
octave> plot(inPts(1,:),inPts(2,:))
octave> axis (’“square’”)

The last command in the group above makes sure that spacing between points on the
x- and y-axes look the same. (Try the same set of commands omitting the last one.) At
this stage, if you wish to draw in some lines connecting the origin to individual points
on this circle, you can do so. For instance, given that I chose spacing 0.05 between my
parameter values, the “circle” drawn above really consists of 126 individual points (pixels),
as evidenced by the commands

octave> length(t)
ans = 126

octave> size (inPts)
ans =
2 126

So, choosing (in a somewhat haphazard fashion) to draw in vectors from the origin to
the 32nd (green), 55t (red) and 111t (black) of these points, we can use the following
commands (assuming that you have not closed the window containing the plot of the
circle):

octave> hold on
octave> plot ([0 inPts(1,32)], [0 inPts(2,32)], ‘g’
octave> plot([0 inPts(1,55)], [0 inPts(2,55)], 'r’
octave> plot([0 inPts(1,111)], [0 inPts(2,111)], ~’
octave> hold off

)
)
k”)

To get the corresponding oval, we need to multiply the vectors that correspond to the
points on the circle (drawn using the commands above) by the A in Example 17.

( octave> A = [2 1; 0 3]; W
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octave> outPts = A*inPts;
octave> plot(outPts(1,:),outPts(2,:))
octave> axis(”square”)

Of course, if you want to know what point corresponds to any individual vector, you can
explicitly ask for it. For instance, you can get the point Av on the oval corresponding to
v = (=1/V2,1/ V2) quite easily using the commands

octave> v = [-1/sqrt(2); 1/sqrt(2)]
v =

-0.70711

0.70711

octave> Axv

ans =
-0.70711
2.12132

To see Av for the three (colored) vectors we added to our circle’s plot, you can use the
commands (assuming the window containing the oval is the last plot your produced)

octave> subInPts = inPts (:,[32 55 111]);

octave> subOutPts = AxsubInPts;

octave> hold on

octave> plot ([0 subOutPts(1,1)], [0 subOutPts(2,1)], ‘g
octave> plot([0 subOutPts(1,2)], [0 subOutPts(2,2)], ’'r
octave> plot([0 subOutPts(1,3)], [0 subOutPts(2,3)], 'k
octave> hold off

Use commands like these to help you answer the following questions.

a) Choose an angle a € [0,27) and form the corresponding matrix A of the form (1.4).
In Item 1 of Section 1.4 we established that multiplication by A achieves a rotation
of the plane. Find the eigenvalues of A.

b) Consider the matrix A from Example 16. What are its eigenvalues? Describe as ac-
curately as you can the way the plane R? is transformed when vectors are multiplied
by this A.

o) Still working with the matrix A from Example 16, write it as a product A = BC,
where both matrices on the right side are 2-by-2, one of which has the form (1.4) and
the other has the form (1.7). (Hint: If (a + bi) is one of the eigenvalues of A, then the

quantity Va? + b? should come into play somewhere.)

d) Make your best effort to accurately finish this statement:

If A is a 2-by-2 matrix with complex eigenvalues (a + bi) and (a — bi) (with
b # 0), then multiplication by A transforms the plane R? by ....
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1.43 Suppose A is a 2-by-2 matrix with real-number entries and having at least one
eigenvalue that is real.

a) Explain how you know A has at most one other eigenvalue.

b) Can A have a non-real eigenvalue along with the real one? Explain.

¢) Consider the mapping (x — Ax): R?> — R2. Is it possible that, given the matrix A,

this function brings about a (rigid) rotation of the plane? Explain.

1.44 Write a matrix A such that, for each v € R?, Av is the reflection of v

a) across the y-axis. Then use Ocrtavk to find the eigenpairs of A.

b) across the line y = x. Use Octavk to find the eigenpairs of A.

) across the line y = (=3/4)x. Use Ocrave to find the eigenpairs of A.

d) across the line y = (a/b)x, where a, b are arbitrary real numbers with b # 0.

1.45

a) Write a 3-by-3 matrix A whose action on R is to reflect across the plane x = 0. That
is, for each v € R3, Av is the reflection of v across x = 0. Use Ocrave to find the
eigenpairs of A.

b) Write a 3-by-3 matrix A whose action on IR? is to reflect across the plane y = x. (Hint:
Your answer should be somehow related to your answer to part (b) of Exercise 1.44.)
Use Ocrave to find the eigenpairs of A.

¢) Suppose P is a plane in 3D space containing the origin, and n is a normal vector to
P. What, in general, can you say about the eigenpairs of a matrix A whose action on
IR3 is to reflect points across the plane P?

1.46

a) Consider a coordinate axes system whose origin is always fixed at the Earth’s center,
and whose positive z-axis always passes through the North Pole. While the positive
x- and y- axes always pass through the Equator, the rotation of the Earth causes the
points of intersection to change, cycling back every 24 hours. Determine a 3-by-3
matrix A so that, given any v € IR that specifies the current location of a point on (or
in) the Earth relative to this coordinate system, Av is the location of this same point
in 3 hours.
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b)

Repeat the exerise, but now assuming that, in every 3-hour period, the poles are 1%
farther from the origin than they were before.

1.47 When connected in the order given, the points (0,0), (0.5,0), (0.5,4.5), (4,4.5), (4,5),
(0.5,5), (0.5,7.5), (5.5,7.5), (5.5,8), (0,8) and (0, 0) form the letter ‘F’, lying in Quadrant I
with the bottom of the stem located at the origin.

a)

b)

)

d)

1.48

74

a)

Give Octave commands that produce a plot of the letter with the proper aspect.
(Include among them the command you use to store the points, doing so not storing
the points themselves, but their corresponding homogeneous coordinates, storing
them as hPts.)

What 3-by-3 matrix would suffice, via matrix multiplication, to translate the letter
to Quadrant III, with its top rightmost point at the origin? Give OcTtave commands
that carry out this transformation on hPts and produce the plot of the letter in its
new position.

What 3-by-3 matrix would suffice, via matrix multiplication, to rotate the letter about
its effective center (the point (2.75,4)), so that it still lies entirely in Quadrant I, but
is now upside down? Give Octave commands that carry out this transformation on
hPts and produce the plot of the letter in its new position.

Extract the original points from their homogeneous coordinates with the command

L octave> pts = hPts(1:2,:); j

Now consider 2-by-2 matrices of the form

Az[g) ;].

Choose several different values of ¢, run the command

L octave> chpts = Aspts; j

and observe the effect by plotting the altered points (found in chpts). These matrices
are called shear matrices. For each A you try, find the eigenpairs of A. Summarize
your observations about the effect of shear matrices on the letter, and what you note
about the eigenpairs.

Suppose D is a diagonal matrix with entries along the main diagonal dy, ..., d,.
Suppose also that A, S are n-by-n matrices with S nonsingular, such that the equation
AS = SD is satisfied. If S; denotes the jth column (a vector in R") of S, show that
each (d}, S) is an eigenpair of A.



b)

)

d)

1.9 Eigenvalues and Eigenvectors

Find a matrix A for which (4,1,0, —1) is an eigenvector corresponding to eigenvalue
(-1),(1,2,1,1) is an eigenvector corresponding to eigenvalue 2, and both (1, -1, 3, 3)
and (2, -1,1,2) are eigenvectors corresponding to eigenvalue 1. (Youmay use OCTAVE
for this part, supplying your code and using commentary in identifying the result.)

Show that, under the conditions of part (a), det(A) = H?:l d;. Thatis, det(A) is equal
to the product of the eigenvalues of A. (This result is, in fact, true even for square
matrices A which do not have this form.)

Two square matrices A, B are said to be similar if there is an invertible matrix P for
which B = P7'AP. Show that, if A is an eigenvalue of B, then it is also an eigenvalue
of A.
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2 Vector Spaces

2.1 Properties and Examples of Vector Spaces

In Chapter 1 we often worked with individual vectors. We now shift our focus to entire
collections, or spaces, of vectors all of the same type.

2.1.1 Properties of R”

The set of all 2-by-1 matrices with real-number entries is called Euclidean 2-space, or R2.
The 3-by-1 matrices with real entries are collectively referred to as R?, Euclidean 3-space.
The sets R, R?, R?, ..., R" and so on, are all examples of vector spaces. The fundamental
properties shared by these Euclidean spaces are summed up in the following theorem.

Theorem 6: Let n > 0 be an integer. The following properties hold in R".

(i) For each pair of vectors u, v € R", u+v € R" as well. This property is usually
summed up by saying R" is closed under addition.

(ii) For each c € Rand v € R", cu € R". We summarize this property by saying
R" is closed under scalar multiplication.

(iif) AdditioninR"is associative: Givenany u, v, w € R”, (u+v)+w = u+(v+w).
(iv) Addition in R" is commutative: Givenanyu,ve R, u+v=v+u.

(v) Existence of an additive identity: There is an element, call it 0, found in R”
having the property that, for eachv e R", 0+ v = v.

(vi) Existence of additive inverses: Still denoting the additive identity of R" by
0, for each v € IR" there is a corresponding element ¥ such that v + ¥ = 0.

(vii) Distributivity I: For each pair of real numbers ¢, d and each element v € R”,
(c+d)v=cv+adv.

(viii) Distributivity II: For each real number c and each pair of elements u, v € R",
c(u+v)=cu+cv.
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(ix) Given any pair of real numbers c, d and any element v € R", (cd)v = c(dv) =

d(cv).

(x) Given any v € R", (1)v = v. (That is, scalar multiplication by 1 leaves v
unchanged.)

Indeed, there are other sets besides the Euclidean spaces R" (n = 1,2,...) which have
these same ten properties. Let k > 0 be an integer. Then the set ¢*(a, b) consisting of
functions whose

e domains include the interval a < x < b, and
e are k-times continuously differentiable on that interval,

also have these ten properties. (Thatis, one can replace every instance of “IR"” in Theorem 6
with “@*(a, b)” and the theorem still holds.) Since these ten properties are prevalent outside
the Euclidean spaces, they have come to be the defining criteria for a real vector space,
the criteria any set of objects called a (real) vector space must have. We will state this as a
definition.

Definition 9: Suppose YV is a collection of objects that comes equipped with def-
initions for addition (i.e., the sum of any two objects in V is defined) and scalar
multiplication (i.e., any object in V may be multiplied by any real number c). If
Theorem 6 still holds when every instance of “IR"” appearing in the theorem is
replaced by “V”, then V is a real vector space (or vector space over the reals).

Example 18:

Let v € R3 be fixed and nonzero, and consider the set U = {tv|t € R} consisting of all
scalar multiples of v. Notice that another way to describe U is that it is span({v}), and
that it represents a line in IR® that passes through the origin. This U is a vector space.

|

Example 19:

Let u, v € R3 be fixed, nonzero, non-parallel vectors. Let U = span({u,v}). This
U is a vector space as well. Speaking geometrically, U is a plane in R?, once again
containing the origin.
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The last two examples have followed a theme: Start with a collection of vectors, and
look at their span. In the next section, we will show that the span of a collection S of
vectors in IR” is always a vector space. To verify this, it seems one should have to do as
described in Definition 9—that is, run through all ten items in Theorem 6, replacing R"
with U = span(S), and check that each holds. As we will learn in the next section, since
the items in U are all from R”, already known to be a vector space, there is a much shorter
list of things to check.

2.1.2 Some non-examples

Theorem 6 tells us IR? is a (Euclidean) vector space. One may equate this space with the
2-dimensional plane—the set of points {(x, y) | x, y are real nos.}. Our next example shows
why, when you take incomplete portions (or proper subsets) of the plane, you often wind
up with a set that is not a vector space.

Example 20:

Within IR?, consider the set of vectors S which, when placed in standard position (i.e.,
each having initial point at the origin), have terminal point on or above the x-axis.
That is, S := {(x,y)|y > 0}. S is not a vector space for several reasons. One is that it
is not closed under scalar multiplication (property (ii)). As an example, even though
the vector (3,1) is in S and (-1) is a real number, (—1)(3,1) = (-3, —1) is not found in S.

A related reason is this. Though S has an additive identity (0,0), it does not, in
general contain additive inverses (property (vi)). There is simply no element found in

S that you can add to (3, 1) to get (0, 0). .

Example 21:
In Example 7 we found the solution set of the matrix equation

BN

S=1{2,0,1)+t-1,2,0)|t e R} .

to be

This set is not a vector space, since it is not closed under addition (property (i)). For
instance, both the vectors u = (2,0,1) and v = (1,2, 1) are found in S, the first arising
when t = 0 and the 2" when = 1. Were S closed under addition, thenu+v = (3,2,2)
would be in S as well. However

3
21 -1 21 -1 6
[4 2 1](‘”"):[4 2 1]% :[18]'
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not (3,9), so u + v is not in the solution set S.
|

In the same vein as the last one, we next consider an example where the set consists of
solutions to a linear nonhomogeneous differential equation.

Example 22:
Consider the linear differential equation
y'@) +y) = x.
Using standard techniques, one can show that the general solution of this ODE is
y(x) = x+c1cos(x) + cpsin(x) .
That is, the general solution is a set of functions
S = {x+cpcosx+cpsinx|cy,co € R} .
Both
y1(x) = x+cosx and y2(x) = x+sinx

are in the set S, the first arising when c; = 1, c; = 0 and the 2nd when c1=0,c0=1.1If
S were closed under addition, then

y1(x) + y2(x) = 2x + cos(x) + sinx

would also be in S (i.e., it would solve the differential equation). We leave it to the

reader to show this is not the case.
|

2.2 Vector Subspaces

In the previous section we suggested (without proof) that, given any collection S of vectors
from a vector space V, span(S) is a vector space. This idea that inside any given vector
space V there lies many other vector spaces is key to a complete understanding of the
functions (v = Av) (where A is some given m-by-n matrix) we studied in Chapter 1.

Definition 10: Let V be a vector space, equipped with addition + and scalar mul-
tiplication -, and W be a subset of V. If W, when equipped with the same
addition and scalar multiplication as V, is itself a vector space, then we call W a
vector subspace (or just subspace) of V.

We intimated in the last section that there is a much easier process for checking if a
collection of vectors is a subspace than verifying the properties in Theorem 6. We give this
test now.
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2.2 Vector Subspaces

Theorem 7 (Subspace Test): A subset W of a vector space V is a subspace of V
if and only if it is the case that, for each wy, w, € W, span{wy, w»} is a subset of
W. That is, for each wq, wp € W and each scalar ¢y, ¢, the linear combination
w1 + cowp is in ‘W as well (i.e., W is closed under taking linear combinations).

Following are the most important examples of vector subspaces. A couple of these have
been asserted (in the previous section) to be vector spaces, but we put off demonstrating
how we knew this because we did not yet have the Subspace Test.

Example 23:

1. span(S) is a subspace.
Let S = {vy, ..., vi} be a subset of the vector space R”. Then W = span(S) is a
subspace of R". To see this, let c¢;, c2 € R and wy, wy € W, the latter meaning
that there are coefficients a4, ..., a; and by, . .., by such that

W1 = aqv] +axvpy + -+ apvi and Wy = b1V1 + b2V2 + o+ bkvk .

Thus, the linear combination

C1W1 + CoW» 1 (El1V1 +avy + .-+ llka) + C2(b1V1 + b2V2 + -+ kak)

(c1a1 + c2br)vy + (c1a2 + c2bo) v + - - - + (c1ak + Cab) vy

is, once again, a linear combination of vectors in S.
Note that, in one fell swoop, this establishes that
e All lines in R" that pass through the origin (zero element) are subspaces of
R". That is, for any such line one may select a representative vector v (one
whose direction matches that of the line) so that the line is just span({v}).
e All planes in R” that pass through the origin are subspaces of R”. That is,
for any such plane one may select two linearly independent vectors u, v lying
in the plane so that the plane is simply span({u, v}).
e Similar to the above, all hyperplanes (higher-dimensional planes) in IR” that
pass through the origin are subspaces of R".
e The column space of an m-by-n matrix A is a subspace of R™.

2. The trivial subspace.
Let V be a vector space, and 0 its additive identity. We verify that W = {0} is a
subspace by assuming that wy, wo € ‘W, and ¢y, c; € R. Though these elements
were arbitrarily chosen, since ‘W has only 0 in it, both w; = wy = 0. Thus,

ciwy + oWz = (c1)0+(c2)0 = 0,
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showing that cywy + cowy € W that is, ‘W is closed under taking linear combi-
nations.

3. Nullspace is a subspace.
More specifically, if A is an m-by-n matrix, then null (A) is a subspace of R". To
see this, let ¢1, ¢ € R and vy, vo € null (A). Then

A(01V1 + C2V2) = C1Avy + AV, = (61)0 + (C2)0 =0,

showing that the linear combination (c;vy + cavp) is in null (A) as well.

4. Eigenspace is a subspace.
Let A be an n-by-n matrix with real eigenvalue A. The set

Ey, := {(veR"|Av = Av}

is known as the A-eigenspace (or the eigenspace associated with eigenvalue 1)
of A. To see that E, is a subspace of IR", first notice that it contains only vectors
from IR". Moreover, for any pair of vectors vy, v, € Ej, and any real numbers ¢,
2 € R, we have

A(c1vi + Vo) = c1Avy + oAvy = c1(Avy) + c2(Ava) = Acqvy + cavo),

which shows that the linear combination (civy + cpv7) satisfies the equation
Av = Av it is required to satisfy in order to be in E;.

Since it is the case, sometimes, that an eigenvalue A is nonreal, a slight modifi-
cation of the above is needed in such cases. In this case, the A-eigenspace of A
is

Ey := {veC"|Av = Av}.

It is still a vector space in its own right, but is now a vector subspace of C".
|

2.3 Bases and Dimension

In Section 1.8 we introduced the term basis. The context in which we used this word was
that we had a collection S = {uy, ..., ux} of vectors—perhaps the columns of a matrix—and
we used a process (Gaussian elimination) to eliminate whatever vectors necessary from
this collection to arrive at a linear independent (sub-)collection B. We called B a basis for
span(S), not just because B is a linearly independent collection of vectors, but also because
its span (the collection of vectors which may be written as a linear combination of vectors
in B) is the same as span(S). We summarize this in the following definition.
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2.3 Bases and Dimension

Definition 11: A collection B of vectors from a vector space V is called a basis for
Vif

e Bspans YV (i.e.,, V = span(B)), and

e Bis linearly independent.

There are some situations in which a basis is readily apparent.

Example 24:
The collection of vectors B = {i,j} is a basis for R2. To verify this, we must check
several things. First, the vectors in B must come from RZ; they do, so long as we
understand i to be (1,0) and j = (0,1). Next, it must be the case that every vector
veR?is expressible as a linear combination of the vectors in B; this is so, since

v = (v1,02) = v1i+ 17 .

Finally, it must be the case that the set B is linearly independent; we can see this is so

10 . . o
01 whose columns are the vectors in B and noting that it is
already an echelon form having no free columns. (There are, of course, other ways to
see that the vectors in B are linearly independent.)

by building a matrix [

We may also think of i, j as vectors in R3 (that is, i = (1,0,0) and j =1(0,1,0)). If we
join to these the vector k = (0,0, 1), then the set B = {i, j, k} is a basis for R3.

More generally, for any fixed positive integer n we may take e; € R”, for j =
1,2,...,n, to be the vector all of whose elements are zero except for the ith element,
which is 1. That is, e; = (1,0,...,0), e2 = (0,1,0,...,0), etc. Then the collection
B = {ey,ey,...,e,} is a basis for R". The claims of this and the previous paragraph
may be verified in precisely the same way as was our claim of a basis for R? in the
first paragraph.

|

While the standard bases of the previous example are important bases for the Euclidean

vector spaces, it is sometimes more convenient to use an alternate basis. There are, in fact,
infinitely many bases for IR?, n > 1. The next example gives an alternate basis for R3.

Example 25:
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Show that the set B = {(1,0,0),(1,1,0),(1,1,1)} is a basis for IR3.

Obviously all of the vectors in B come from R3. Let us form a matrix whose columns
are the vectors in B:

111
01 1].
0 01

For a different set of vectors B, we might have had to use Gaussian elimination to
obtain an echelon form. But here our matrix is already an echelon form. Since it has
no free columns, B is a linear independent set.

The final criterion (for B to be a basis for IR®) is that each vector b € R needs to
be expressible as a linear combination of the vectors in B. That is, given any b € R3,
there must be scalars cy, ¢z, c3 that satisfy the criterion

1 1 1 1 1 1| by
C1 ol + (8} 11+ C3 1l =D , or 011 | = bz .
0 0 1 0 0 1ffcs bs

Since the (echelon) matrix A has no row of zeros at the bottom, this problem (i.e.,
“Given b, find ¢ = (c1, ¢, ¢3) so that Ac = b”) is consistent. (We need not solve for the

coefficients ¢y, ¢z, c3 to know that the equation can be solved.)
[ |

Let’s consider the previous example more carefully. We started with a collection of
vectors. We formed a matrix using these vectors as columns, and found a row equivalent
echelon form (in the example, this did not require any work). Since our echelon form has
no free columns, we conclude that the vectors are linearly independent; since the echelon
form has no row consisting solely of zeros, we conclude they span our space (in this case,
span R3).

When will a set S = {uy,uy, ..., u} of vectors in IR” not be a basis for R"? Assembling
the vectors of S into the matrix A = [ u ‘ u ‘ p ‘ uy ], we see the set S cannot be a basis if

e k> n. In this case, it is a certainty that the matrix A has an echelon form with free
columns. (Recall, by Exercise 1.32, that the rank of a matrix is never larger than
the smaller of its two dimensions. In our case, the matrix is n-by-k with k > n, so
rank(A) < k, or nullity (A) > 0.)

e k < n. To see this, suppose rank(A) = k (i.e., every column of an echelon form R for
A contains a pivot). In this case, there are 1 — k rows of zeros at the bottom of R, and
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there are certainly vectors b € IR” for which

—px-*~~~>(->(-
0 p = * | %
00 p -+ =*| =
(ATl ~10 00 0 |« |
000 - 0 q
1000 - 0gux|

where one or more of the values gy, ..., g, in the augmented column is nonzero.
Thus, the system is inconsistent for some vectors b € R”, and hence S does not
span R". In the case rank(A) < k, this only adds more rows of zeros at the bottom,
compounding the problem.

e it is a linearly dependent set of vectors. Equivalently, it cannot be a basis when the
matrix A = [ u ‘ up ‘ ‘ uy ]has an echelon form with free columns.

These observations suggest the following theorem which, though we do not prove it here,
is nonetheless true.

Theorem 8: Every basis of a (fixed) vector space V contains the same number of
vectors. Moreover, if the number of elements comprising a basis for V is n (finite),
then a collection B containing n vectors from V is a basis for V if and only if B is
linearly independent.

We have seen that there are vector spaces which lie inside of IR", the subspaces of IR".

1. Each line through the origin of R" is a subspace W of R". If we select any nonzero
vector v that is parallel to the line, then {v} is a basis for ‘W. A basis for such a
subspace W must contain exactly one vector, even though there is considerable
freedom in the choice of that vector.

2. Let W be a plane in R" passing through the origin. If we select nonzero, nonparallel
vectors (i.e., linearly independent) u, v € ‘W, then {u, v} is a basis for ‘W. While there
are many bases (many different choices of u, v) for such a subspace ‘W, a basis must
contain exactly two vectors.
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3. For a given m-by-n matrix A, col(A) is a subspace of R". Our method for finding a
basis for col(A) is to use Gaussian elimination to find an echelon form R for A. We
then take as our basis those columns of A which correspond to pivot columns in R.
While there are other bases for col(A), all such bases have precisely rank(A) vectors.

4. For a given m-by-n matrix A, null (A) is a subspace of R". Our method for finding
null (A) is to use Gaussian elimination to find an echelon form R for A. We then
write out solutions to the equation Rx = 0. Except in the case null (R) = {0}, these
solutions take the form

tivy + vy + - -+ frvy, ti,t, ...,k €R,

where k = nullity (A) is the number of free columns in R. The resultis {vy, ..., vi}isa
basis for null (A). Again, there are other bases for null (A), but all such bases contain
precisely nullity (A) vectors.

All of these examples reflect the conclusions of Theorem 8—i.e., that for any (but the
trivial) real vector space V, there are many bases, but the number of elements in a basis for
vV is fixed. That number is known as the dimension of V, or dim(‘V). The lines which are
subspaces of R" have dimension 1; the planes which are subspaces have dimension 2. By
convention, the trivial vector (sub)space {0} is said to have dimension 0. By Example 24,
the dimension of the entire space R" is n.

Along with col(A) and null (A), there are two other vector spaces commonly associated
with a given m-by-n matrix A. The first is the row space of A, denoted by col(AT). As the
notation suggests, the row space of A is just the column space of AT, and hence is a vector
space. More specifically, it is a subspace of R".

Were we to want to know the dimension of col(AT), or to find a basis for it, we could
carry out this now-familiar process: (i) reduce AT to echelon form, (ii) determine the
quantity (which equals dim(col(AT))) and placement of free columns, and keep just the
pivot columns of AT for our basis. At the heart of this method is the understanding that,
using ry, ..., Iy, to denote the rows (1-by-n matrices) of A, col(AT) = span({rlT, 1.
Thus, S = {rlT, .. ,r%} serves as a starter set en route to a basis for col(AT). To get a basis,
we eliminate any of the rows r; which are redundant in the sense that 1; is, itself, a linear
combination of the other rows.

But there is no need to work with AT to figure out which rows are redundant. Gaussian
elimination on A itself involves instances of Row Operation 3 (adding a multiple of one
row to another) in sufficient quantity to zero out those rows which are linear combinations
of previous rows. Those rows which, in an echelon matrix for A, do not contain only
zeros—rows we might call pivot rows because they each contain a pivot—are not zeroed
out precisely because they are not linear combinations of the previous ones. And, the term
row equivalence we use when A ~ B (i.e,, when B may be obtained from A through a
sequence of elementary row operations) is suggestive of the truth, which is that both matrices
have the same row space. We thus arrive at the following alternate procedure for finding
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a basis for and the dimension of col(AT):

Finding the dimension of, and a basis for, the row space of A:

e Reduce A to an echelon form R.

e Count the number of pivots (or the number of pivot rows/columns) in R. This
number is dim(col(AT)). (Note that this also means dim(col(AT)) = rank(A).)

e Determine the pivot (not-fully-zero) rows in R. (These rows will conveniently appear
together above any zeroed-out rows.) Take the tranposes of these pivot rows; let’s
call the resulting vectors (elements of R") uy, ..., u;. Then B = {uy, ..., u,} is a basis
for col(AT).

The other subspace associated with an m-by-n matrix A is called the left nullspace of

A. Once again, the symbol we use to denote the left nullspace, null (AT), is sufficient to
suggest to the reader the criteria vectors must satisfy to be in it. We relegate investigation

of null (AT) to the exercises.

Example 26:
The matrix
2 6 1 1 1 0 -1 3
A=11 0 -1 3 has echelon form 01 1/2 -5/6].
1 -6 -4 8 00 O 0

Use this to find a basis for the row, column and null spaces of A.

A basis for the row space is {(1,0,-1,3),(0,1,1/2,-5/6)}. (Note there are many bases;
another basis for col(AT), one that avoids fractions, is {(1,0,-1,3),(0,6,3,-5)}.) A
basis for the column space is {(2,1,1), (6,0, —6)}.

There is still some work required to find a basis for null (A). We have two free
columns, so we get from the echelon matrix that vectors x = (x1,x2,x3,x4) in the
nullspace satisfy

x1—x3+3x4 = 0,
Xy + %X3 — gx4 = 0,
X3 = S, seR,
xqg = t, telR.
which means
X1 s —3t 1 -3
X (5/6)t—(1/2)s -1/2 5/6
= = S + t .
X3 S 1 0
X4 t 0 1

So, a basis for null (A) is {(1,-1/2,1,0),(-3,5/6,0,1)}.
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Exercises

2.1 In Subsection 2.1.1 it is claimed that €*(a, b), the set of real-valued functions defined
on the open interval (4, b) of the real line which have continuous derivatives up to the kth
order, is a real vector space. That is, a theorem like Theorem 6 (with every instance of “Rk”
replaced by "%k(a, b)”) is, in fact, true. If so, then what, precisely, is the additive identity
in €*(a,b)? Describe, using notation like (x — f(x)), exactly what this additive identity
function does. State how you know the function you give as an answer is a member of
€*(a, b).

2.2 In Example 19 we indicate that, when two nonzero, non-parallel vectors u, v are
selected in R3, U = span({u, v}) is a vector space, described geometrically as a plane
through the origin.

a) Show that the requirements “nonzero” and “non-parallel” guarantee that the set
{u, v} are linearly independent. Is the opposite (i.e., linear independence of {u, v}
guarantees u and v are nonzero and non-parallel) true?

b) Foru=(1,2,-1)and v = (0, 1, 1), write the equation (write it in the form Ax+By+Cz =
D) of the plane span({u, v}). (Hint: This involves material covered in Section 10.5 of
University Calculus. It involves taking a cross product.)

¢) You should have found in part (b) that the value of D is zero. Does this always
happen with planes through the origin?

2.3 The subset of R® described by

3 1 0
~1{+s|0|+¢t| 1], s, teR,
1 1 -1

is a plane in R°.
a) Show that this plane is not a vector space.

b) Write a similar description of the plane parallel to the given one which passes through
the origin.

¢) Write, in Ax + By + Cz = D form, the equations of both planes.

2.4 Error-Correcting Codes: The Hamming (7,4) Code. In this problem, we wish to look
at a method for transmitting the 16 possible 4-bit binary words
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0000 0001 0010 0011 0100 0101 0110 0111
1000 1001 1010 1011 1100 1101 1110 1111

in such a way that if, for whatever reason (perhaps electrostatic interference), some digit
is reversed in transmission (a 0 becomes a 1 or vice versa), then the error is both detected
and corrected.

First, consider the set Z5. The objects in this set are n-by-1 matrices (in that respect
they are like the objects in IR"), with entries that are all zeros or ones. We wish to define
what it means to add objects in Z, and how to multiply these objects by a reduced list of
scalars—namely 0 and 1. When we add vectors from Z, we do so componentwise (as in
R"), but with each sum calculated mod 2.! Scalar multiplication is done mod 2 as well.
For instance, in Z; we have

1 1 0 1 0 1 1
0[+10f = |0{, 010f = |0 and 1{0] = [0O].
1 0 1 1 0 1 1

a) Show that, with this definition of vector addition and scalar multiplication, Zg is a
vector space (over the field of scalars Z, = {0, 1}).

Note that, when operations are performed mod 2, an m-by-n matrix times a vector in Zj
produces another vector in ZJ'. For instance

31 2 1 0 110 1 0
Leao 1| = ! and is equivalent to 100 1| = !
2 01 1 1’ 0 01 1 1|
7 21 0 1 01 0
Consider the matrix
0001111
H:=1/01 10 0 1 1/.
1010101

An easy way to remember this matrix, known as the Hamming Matrix, is through noting
that beginning from its left column you have, in sequence, the 3-bit binary representations
of the integers 1 through 7.

b) Find a basis for null (H), where the matrix product Hx is to be interpreted mod 2
as described above. (Hint: When you add a scalar multiple of one row to another
during row reduction, both the scalar multiplication and the row addition is done
componentwise mod 2.)

!Modular arithmetic is the type of integer arithmetic we use with clocks. For a standard clock, the modulus
is 12, resulting in statements like “It is now 8 o’clock; in 7 hours it will be 3 o’clock” (i.e., “8 + 7 = 3”). In
mod 2 arithmetic, the modulus is 2, and we thereby act as if the only numbers on our “clock” are 0 and 1.
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One basis (probably different than the one you found in part (b)) of null(H) is u; =
(1,0,0,0,0,1,1), u, =(0,1,0,0,1,0,1), uz = (0,0,1,0,1,1,0), and ug = (0,0,0,1,1,1,1).

¢) Show that the collection {uy, uy, us, ug} is, indeed, a basis for null (H).

Transmitting a 4-bit Word

Let (c1, ¢, c3,¢4) be a 4-bit word (i.e., each ¢; is 0 or 1), one we wish to transmit. We use the
valuescy, . .., c4 to generate a 7-bit word via a linear combination (mod 2) of {uy, uz, uz, uy}.
To be precise, instead of the original 4-bit word, we transmit the 7-bit word

V = (C1uq + Cup +c3u3 +c4uy = (C1,C2,C3,C4, Cp +C3+Cq,C01 +C3+Cq,C1+C2+ C4).

This v is in both ZZ and null (H). (Do you see why it is an element of the latter?)

Error Detection and Correction

Suppose a 7-bit word V is received. It may be the same as the transmitted v, or it may be
a corrupted version of v. Suppose that at most one binary digit of ¥ is in error. Then the
matrix product HV tells us what we need to know. To see this, consider two cases:

e There are no errors (thatis, ¥ = v).
In this case, HV = Hv = 0, and the receiver can take the first 4 bits (entries) of v as
the original 4-bit word intended.

e There is an error in position i (so ¥ = v + e;, where e; is a vector of zeros except in its
ith position, where it has a 1).
In this case, HV = H(v + ¢;) = Hv + He; = 0 + He; = He; = ith column of H. Thus,
HYV # 0 in this case. Moreover, by inspecting which column of H is equal to HV, we
learn which of ¥’s digits is different from those of v. The receiver may correct that bit
in ¥, and once again take the first 4 bits of this (newly-corrected) ¥ as the intended
word.

d) Suppose that the 7-bit word (1,0,1,1,1,0,0) is received. Assuming that this was
originally a 4-bit word that was sent using the Hamming (7,4) error-correcting code,
and assuming at most one binary digit becomes corrupted during transmission,
what was the original 4-bit word?

e) Investigate what happens if more than one binary digit becomes corrupted in the
transmission process (i.e., more than one of the 7 bits changes from 0 to 1 or 1 to 0)
and report on your findings.

2.5 Let n be a positive integer. Give an appropriate definition for the vector space R".

2.6 Show that the set of vectors

S = {X = (x1,Xx2,%3) € R?|x1 = xz} ,

90



2.3 Bases and Dimension

is a subspace of IR>.

2.7 Determine whether the set of vectors

S = {x=(x,1)eR|x €R},

is a subspace of IR?. (Indicate how you know.)

5 -15 -25 8§ -15 -25

2.8 Consider the matrices A=|{-5 15 25| and B=|-5 18 25|

a)
b)
)

d)

e)

f)

5 -15 -25 5 -15 -22
Find a basis for null (A).
Use Ocrave to find the eigenpairs of B.

Write a sentence describing why part (a) may be viewed as a sub-problem of part (b)
(i.e., one of the tasks performed along the way to getting the eigenpairs of B).

In light of part (c), you should be able to write down an answer to part (a) using only
the Octave output you obtained in part (b). What basis do you get? This basis (i.e.,
the one you extract from part (b)) probably looks quite different than the answer you
worked out in part (a). Let {v1,v2} denote the basis you obtained in part (a), and
let {wy, wy} be the basis obtained from Octave output. Show that v; and v, are in
span({w, w})—that is, show that there are coefficients (scalars) ci, c2, d; and d» such
that

Vi = C1W1 + oW and vy = diwy + dowy.
Is the reverse true as well—i.e., are wy, w» in span({vy, v2})?

Continuation of part (d). Explain why it is not automatically a point of concern if the
bases {vi, vo} and {w1, wp} do not agree.

Continuation of part (e). Of course, there is the possibility that the bases {vy, v} and
{w1, wy} disagree because of calculation error, which would be a point of concern. One
should not be so comfortable with the likelihood of a discrepancy between the two
bases that a faulty answer obtained by hand goes unnoticed. Describe a method one
might use to check a “by-hand” answer.

2.9 Find a basis for span(S).

a)

b)

5=1{2,1,6),(3,2,-1),(1,1,-7),(1,0,13)}

$=1{1,3,2,1),(-1,-1,1,2),(0,2,2,1),(1,1,1,-1)}
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2.10 Suppose YV is a vector space over the reals whose dimension is n, and that S is a
spanning set for V. If S contains precisely n vectors from V, must S be a basis? Explain.

2.11 Suppose A is an m-by-n matrix whose nullspace null (A) = {0}. Show that, for each
b € R", the matrix equation Ax = b has at most one solution. That is, if x; and x, both
satisfy the matrix equation Ax = b for a given b, then it must be the case that x; = x,.

2.12 Determine whether the set
a) {(2,1),(3,2)} is a basis for R?, and explain how you know.
b) {(1,-1),(1,3),(4,—1)} is a basis for R?, and explain how you know.
o {(1,0,1),(1,1,0),(0,1,-1)} is a basis for R3, and explain how you know.
d) {(1,0,0),(1,1,0),(1,1,1)} is a basis for R3, and explain how you know.

2.13 Show that the set B = {i, j, k} is, indeed, a basis for R3.

2.14 Consider the vector space Z (a vector space over Z; instead of being over the reals) of
Exercise 2.4. What, would you guess, is dim(Z7)? Find a basis for Z} with the appropriate
number of elements to verify your answer.

2.15 Suppose S = {vy,..., vy} is a subset of a vector space V, and that u € span(S). Show
that
span({vy, ..., vy, u}) = span(S) .

Notice that you are being asked to show the equality of two sets. Two sets A and B are
often shown to be equal by showing first that A C B and then that B C A.

2.16 Suppose u € span(S), with u a nonzero vector. Then, by definition, there exist vectors
Vi, ..., V¢ € S and corresponding real numbers a4, . . ., a; such that

u = mvy+...+apvg.

(Note that you may assume, without any loss of generality, that the v; are distinct, and
each a; # 0.) Show that, if S is linearly independent, then there is no other way to write u
as a linear combination of vectors in S. That is, show that if

u = bhywi +...+b,wy,,
where the w; are distinct vectors in S, and each b i #0, then
e m=k,

e for each 1 < j < m, there is some i with 1 < i < k for which v; = w;, and
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e whenever v; = wj, it is the case thata; = b;.

2.17 Suppose that S is a subset of a vector space V and that the number of elements in
S is finite. If S is linearly independent, show that every nonempty subset of S is linearly
independent as well. More specifically, suppose that S = {uy, ..., us} and show that, for
T ={uy,...,uy} with1 <m <k, T is linearly independent.

2.18 Suppose S and T are subsets of a vector space V, each containing finitely many
vectors. Suppose that S spans V, while T is linearly independent. Denoting the number
of elements in T by |T|, what can you say about |T| in relation to |S|? Explain.

2.19 Suppose A is an m-by-n matrix.
a) We express the nullspace of A as
null(A) = {veR"|Av =0} .
Write a similar expression for the left nullspace null (AT) of A.

b) Find a basis for the left nullspace in the specific instance where

2 6 1 1
A=11 0 -1 3].
1 -6 -4 8

Also, find dim(null (AT)).

¢) Give an expression involving the number rank(A) for the dimension of the left
nullspace of A. (Make this a general statement, not reliant on any particular knowl-
edge of the entries of A, only using that its dimensions are m-by-n.)

2 3 0 -1
. . 1 0 3 1

2.20 Consider the matrix A = 3 51 2f
1 0 3 1

a) Find bases for its four fundamental subspaces: col(A), null (A), col(AT) and null (AT).
(Note: You may find it interesting to compare your basis for col(A) with the results
of Example 9.)

b) Select a vector u from your basis for col(A) and a vector v from your basis for
null (AT). Compute their dot product (i.e., compute u’v). What do you get? Try
selecting different combinations of basis elements from these two spaces. Try it
again, now taking u from col(AT) and v from null (A). Formulate a general statement
encapsulating your findings.
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3 Orthogonality and Least-Squares
Solutions

3.1 Inner Products, Norms, and Orthogonality

In MATH 162 (and elsewhere), we encounter the inner product (also known as a scalar or
dot product) of vectors in R?, and use it to find things like the length of a vector and the
angle between two vectors. In this first part of Section 3.1, we extend these ideas to R". In
the second part, we use it to define orthogonality in IR", particularly orthogonality of sets.
Finally, we discuss briefly the idea of an inner product in a more general setting (outside
R"), and vector spaces that have an inner product.

3.1.1 Inner products

We will denote the inner product between vectors u, v € R" by (u, v), given by

n

(u,v) := Zujvj. (3.1)

j=1
Example 27:
1. In R3, the inner productof u = (1,5,-2) and v= (3,-1,1) is
(wv) = DHE)+G)(ED+(=2)(1) = -4
2. For the vectorsu = (-1,2,0,5) and v = (-4, 3,8, -2) from R?,

(wv) = (D=4 +@2)B) +(0)8) +(5)(=2) = 0.

We make a few preliminary observations about the inner product defined in (3.1):

e For vectors u, v € IR”,

(u,v) = u'v.

That is, the inner product of u and v is equal to the matrix product of u’ and v.
Recall that this product can be performed in the other order, vu!, in which case it is
called an outer product, and yields an n-by-n rank-one matrix.
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3 Orthogonality and Least-Squares Solutions

e One might consider (by holding u fixed) the function (v = (u,v)): R" — R. This
map has the property that, for any vectors v, w € R" and scalars a, b € R,

{(u,av+bw) = a{u,v) +b{(u,w) . (3.2)

e There is no provision in our definition of (u, v) for vectors coming from different
vector spaces R” and RF with k # n. We need our vectors to have the same number
of components.

As a start, foru, v, w € R" and 4, b € R, we have
n
(u,av + bw) = Zuj(av]' +bwj) = ...
=1

We take the length of a vector v in R" to be

; 1/2
vl == v, v) = [Z vﬁ] :
=1
Notice that, according to this definition, ||v|| is a nonnegative number for all v € R". In
fact, the only way for ||v]| to be zero is for all components of v to be zero. A vector whose
length is 1 is called a unit vector.

Armed with this concept of length, we may define the notion of distance between two vectors.
In particular, given u, v € R”, we take the distance between u and v to be the length of
their difference |ju — v||.

Given two nonzero vectors u, v € R”, we define the angle between u and v to be the
number 6 € [0, 7] which satisfies

(u,v)
[lull[[w]] -

cosf = (3.3)

This definition of an angle cannot be visualized when the dimension  of the space exceeds
3, but coincides precisely with our geometric intuition of angle when n = 2 or 3.

3.1.2 Orthogonality

When the angle 6 between two nonzero vectors in R? is 7/2 (=90°), we call them
perpendicular. In expression (3.3) this corresponds to the numerator (u, v) being zero.
Orthogonality, as defined below, is a generalization of this idea of perpendicularity.

Definition 12: Two vectors u and v from R" are said to be orthogonal if (u,v) = 0.
We often write u L v to indicate u and v are orthogonal.
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Note that the two vectors in part 2 of Example 27 are orthogonal. The zero vector in R" is
orthogonal to every vector of R".

Orthogonality of vectors leads to an important result about the lengths of the legs of a
triangle with sides u, vand u + v.

Theorem 9 (Pythagorean Theorem): Suppose u, v € R" are such that u L v. Then
Il + VI = Jlall® + IvIP.

Proof: We have

lu + v|]? (u+v,u+v)

(You fill in the missing details—see Exercise 3.2)
Jlulf? + vl .

O

We want to be able to talk not only about orthogonality of vectors, but also of sets.

Definition 13: Two subsets S and T of IR” are said to be orthogonal if s L t for
every s € S and every t € T. In this case, we write S L T.

It may be necessary to develop a little intuition about orthogonal sets. For instance,
one might think of the floor and a wall of a room as being orthogonal. Translating
this intuition to R3, one might think the sets U = {x = (x1,x2,x3)|x3 =0} and W =
{x = (x1,x2,x3) | x2 = 0}, corresponding to the xy- and xz-planes, respectively, were orthog-
onal. Indeed, if MATH 162 students were asked to find the angle between these planes,
they would be correct to say it is 77/2. But this is not what we need, according to Defini-
tion 13, for two sets of vectors to be orthogonal. In fact, U and W are not orthogonal, as the
vector i = (1,0, 0) is in both U and ‘W but is not orthogonal to itself. The vectors that are
orthogonal to every vector in U are those which are parallel to (i.e., scalar multiples of)
k = (0,0,1)—that is, those in span({k}). Span({k}) is, in fact, the orthogonal complement of
U, a concept defined for any subset S of IR" as follows:
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Definition 14: Let S be a subset of R". The orthogonal complement of S, denoted
by S* (pronounced “S perp”), is the set of vectors u € R"” which are orthogonal to
every vector in S. That is,

St = {ueR"| (u,s) =0 for every s € S}.

Let U be a plane in R? passing through the zero vector, a 2-dimensional subspace of IR>.
If we select a pair of nonzero, non-parallel vectors u;, up € U, we know from MATH 162
that w = u; X up is normal to U. The set of vectors which are orthogonal to all vectors in
U is given by
U+ = {tw|te R},

a one-dimensional subspace of R3. In fact, it is also the case that, for this same choice of
u,weU,
{up, w}* = {tw|te R},

which is a special case of the following theorem.

Theorem 10: Let S be a subset of R". For each set A containing S as a subset, and
itself contained in span(S) (i.e.,, S € A C span(S)), A+ = S*.

Example 28:

Let A be an m-by-n matrix, and let v € null (A) so that Av = 0. Thus, for each row
vectorr;of A, v L riT—that is, v € {rlT, rg, s, r%}l. But by Theorem 10, this means that
vE span({rlT, rg, ., 1h Dt = col(AT)L. So, null (A) C col(AT)*.

Moreover, if v € col(AT)*, then v is perpendicular to each column of AT, which
allows us to retrace our steps and conclude that v € null (A). Thus, col(AT)* c null (A)

as well, giving us that the two sets col(AT)* and null (A) are, in fact, equal.
u

The content of this example is very important. We state it as part (i) in the next theorem.
Part (ii) follows from (i) in that every matrix is the transpose of another matrix.

Theorem 11: Let A be a matrix with real number entries. We have
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(i) null(A) = col(AT)*.

(i) null (A7) = col(A)*.

We have now seen several examples of orthogonal complements. The orthogonal com-
plement of two nonzero, non-parallel vectors u;, uz in R3is span({u; X uy}), a subspace of
R3. For an arbitrary m-by-n matrix A we know that col(AT) is a subset (subspace, in fact)
of R" and, by the previous example, col(AT)t = null (A), also a subspace of R". These two
examples might lead us to suspect the truth of the following theorem.

Theorem 12: For any subset S of R", S+ is a subspace of R".

Proof: We will use the Subspace Test (Theorem 7). Let u, v € S*, and a, b be
real numbers (scalars). For any vector s € S, we know u L sand v L s, and so

a{s,u) +b(s,v) (this is equation (3.2)
a-0+b-0 (sinces € S,u, v € St)
0.

(s,au + bv)

Thus, an arbitrary linear combination au + bv of u and v is still orthogonal to s.
The choice of s € S was arbitrary, so au + bv is orthogonal to every vector in S,
which is just the requirement for au + bv to be in S*. Thus, S+ is closed under
linear combinations. O

3.1.3 Inner product spaces

The inner product (3.1) provides a mapping whose inputs are two vectors from R" and
whose output is a real number. This inner product has some nice properties, including the
linearity in the second argument noted in (3.2). There are other ways besides (3.1) to define
mappings from R" X R" (or V x V, where V is any vector space) into IR that possess the
same “nice” properties. The properties we require are as follows:
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Definition 15: Let V be a vector space over the reals. An inner product on V
must satisfy the following properties:

(i) (u,v) is a real number for all vectors u, v € V.

(ii) (v,v) > 0 for all v € V, with equality if and only if v is the zero vector of V.
(iii) (u,v) = (v, u) for all vectors u, v € V.
(iv) (au,v) = a{u,v) for all vectors u, v € V and all real numbers a.

(v) (u+v,wy = {u,w)+ (v, w) for all vectors u, v, w € V.

It is not difficult to verify that the inner product 3.1 satisfies all of these properties. Here
is another example of an inner product, this time on the vector space %'([a, b]).

Example 29:

In %([a, b]) (where the ‘vectors” are continuous functions on the closed interval [a, b])
it is common to define the inner product between f, g € €([a, ]) as

b
(fg) = f Fg) d (3.4

Thus, if f(x) = x> and g(x) = sin x are considered as functions in €' ([-7, ]), then they
are orthogonal under this inner product, since

(f,g) = f x?sinxdx = 0.

Tt

(This integral equals zero because the product of an even and odd function is odd.)
The inner product (3.4) on ¢([a, b]) is instrumental in the theory of Fourier series,
being used in the computation of Fourier coefficients. .

Whenever we have a valid inner product on a vector space V, we can emphasize this
fact by calling V an inner product space. If V is an inner product space, we again use the
notation (u, v) to indicate the inner product of two vectors u, v € V.

Because of property (ii) in Definition 15, we can once again define the notion of
length and distance in an inner product space. The usual way to do this is through
the norm derived from the inner product. That is, for each v in an inner product space
V, we may define the (derived) norm of v to be

[o]] == +{v,0). (3.5)
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By length of v, we mean precisely its norm. The distance between two vectors u and v
is once again the norm of their difference, or |[u — v||. Orthogonality, as well, is a concept
associated with any inner product as we saw in Example 29.

3.2 The Fundamental Subspaces

3.2.1 Direct Sums

Recall from the last section that, if we fix a plane U through the origin (a 2-dimensional
subspace) in R?, then U* is a line of vectors through the origin all parallel to a vector
normal to the plane. It is perhaps believable that if you had some destination vector
v € IR? to reach, and if you had to resolve the trip to v into two steps u + w with u € U
and w € U+, that there would be only one choice for u and one choice for w. This is the
situation we wish to investigate in this section.

Definition 16: Suppose U and W are subspaces of a vector space V. Suppose
also that each v € V can be written uniquely as a sum u + w, with u € U and
w € W. Then we say that V is a direct sum of U and W, denoting this by writing
V=UsW.

From the motivating example that precedes this definition, one might guess the follow-
ing result.

Theorem 13: If U is a subspace of R”, then R" = U & U*.

The rest of Subsection 3.2.1 is devoted to proving this theorem and, for those readers in a
rush to get to the point, may be skipped for now.
Before we do so, we state and prove the following intermediate result.
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Lemma 1: If U is a subspace of R", then dim(¥) + dim(U+) = n. More-
over, if {uy,...,u,} is a basis for U and {u,,1,...,u,} is a basis for U+, then

{uy,...,u,,4p41,...,u;,} is a basis for R".
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Proof: If U is the trivial subspace {0} of R", then U+ = R" (see Exercise 3.4),
and all of the claims of this lemma are obviously true. Let us assume, then,
that dim(%) = r > 0, so that a basis {uy, ..., u,} of U is nonempty. Let A be an
r-by-n matrix whose ith row is uZ.T, for 1 <i < r. Note that the row space of A
is all of U, and that rank(A) = r. By Theorem 11,

U = col(AT) = null(A)

SO
dim(U*) = nullity (A) = n—r,

proving the first claim of the lemma.

To prove the remaining claim, we must simply show that the set {uy, ..., u,, u,41, .

is linearly independent. So, let ¢y, ..., c, be real numbers such that
aui+...+cu+ Wy + ...+ cu,, = 0.

Let

u:=cu +...+cu, and W= CrpqUpg] + ...+ Cply,

so that u + w = 0, or u = —w. Since U~ is a subspace of R” containing w, it
follows that u € U+. By Exercise 3.12, u € U N U~ implies that u = 0. Thus,

com+...+cu, =0

and, by the linear independence of {uy,...,u;}, we have ¢y = --- = ¢, = 0.
Similarly, w € U N U+, which leads to

Cr+1ur+1 +...+ Cnun = 0 7

and hencec¢,41 =+ =¢, =0. O
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Proof: [Proof of Theorem 13] We must show that, given any v € R", there are
vectors u € U and w € Ut such that v = u + w and, moreover, there is no
second pair of vectors @t € U and w € U~ that somehow deviates from uand w
(i.e., either @ # u, W # w, or both) for which v = @t + W. Note that, should it be
the case that U = {0} or U = R", then these claims are quite straightforward.
Thus, we focus on the situation where U is neither all of R” nor the trivial
subspace, but has dimension r with 0 < r < n.

Let v e R". By Lemma 1 there is a basis {uy, ..., u;, u,41,...u,} of R” such that
{uy, ..., u,}is a basis for U and {u,,1, ..., u,} is a basis for U+. Any basis of R"
spans IR", so there exist scalars cy, ..., ¢, such that

vV =cCcu t+...+6U + Uy +C4uy .
Now take u := cquy + ... + ¢;u, and w := ¢,41u,41 + Cu, to see that there are
vectorsu € U, w € U+ for whichv=u+w.
It remains to show that such a choice of u, w is unique. So, suppose there are
@ € Uand w € U+ with v = @+ W. Then

u+w = u+w, or u-lt=w—-w.

This shows u — @ € U N UL = {0} and, likewise, W —w € UNU*. Thus, u =i
and w = W. O

3.2.2 Fundamental subspaces, the normal equations, and least-squares
solutions

Recall that if we start with a plane U through the origin in IR?, then U* is a line through
the origin. We could very well have begun with the line through the origin, calling this
W, and found that ‘W= was the corresponding plane. This might lead you to suspect that,
in general, (U*)* = U. The next theorem shows this is almost correct.

Theorem 14: Let S be a subset of R”. Then (S*)* = span(S). In particular, if S is a
subspace of R", then (S+)* = S.

A corollary to this theorem, then, is that the relationship in Theorem 11 is reciprocated.
That is, for any matrix A, along with the relationships expressed in Theorem 11 we also
have

L T T\*
null (A)" = col(A”)  and  null(AT)" = col(A) . (3.6)
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If A is m-by-n, then we know the function (x = Ax): R” — R".
Because of the relationships (3.6) and Theorem 13, we know

R" = col(AT)@null(A) , (3.7)
R" = col(A)®null (AT) . (3.8)
The four vector spaces col(AT) (the row space), null (A) (the nullspace), col(A) (the column
space), and col(AT) (the left nullspace) are, as a group, referred to as the fundamental subspaces of A.
The direct sums in (3.7)—(3.8) show how these fundamental subspaces provide an impor-
tant decomposition to the domain IR” and codomain IR of the mapping (x = Ax).

These decompositions gives rise to the situation depicted in Figure 3.1. By (3.7), every
x € R" is uniquely written as a sum

X = X+ Xy,
where x; € col(AT) and x,, € null (A). If b € col(A), then b = Ax for some x € R". But then
b = Ax = A(x; +x,) = Ax, + Ax,, = Ax,, (3.9)

which shows that it is the part of x lying in col(AT) that entirely accounts for where the
image b = Ax of x lies in R™.

dim r column dim r

——=b

nullspace
of A

dimn-—r

Figure 3.1: The Fundamental Subspaces of A

Now, suppose b ¢ col(A), so that the matrix equation Ax = b is inconsistent, having no
solution. On many occasions we still want some kind of approximate solution. By (3.8), b is
uniquely written as a sum

b=p+e,
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where p € col(A) and e € null (AT), the situation depicted in Figure 3.2. Since p € col(A),

there is some element X € col(AT) for which Ax = p. It is this x which we choose to take
as our approximate solution because, over all elements Ax in the column space, p = Ax is
the closest to b. That is, the quantity

Ib—Ax||  or, equivalently,  |b— Ax|?,

is minimized when x = X. (Note, however, that when nullity (A) > 0, equation (3.9) shows
there are many x € R" that minimize this quantity; each has the same component x in
col(AT).) The vector

r(x) := b—Ax (3.10)

is called the residual. Any x € R” that minimizes the length (or length-squared) of the
residual r(x) is called a least-squares solution of Ax = b.

At=p

Y

Ax=0b -’
~not possible =~ "> " Vb =p + e

Figure 3.2: The action of A (isolated to its row space) into IR

Note that when x is a least-squares solution, then r(x) = e, the part of b that lies in the left
nullspace of A (see Figure 3.2). This is key to finding least-squares solutions for, assuming
that x is a least-squares solution, we have

ATe = ATb-Ax) = 0,

or
(ATA)x = ATp . (3.11)

The name given to (3.11) is the normal equations. Any solution of them is a least-squares
solution of Ax = b. It can be shown that (3.11) always has a solution (see Exercise 3.15),
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so the methods of Chapter 1 may be used to find it/them. Moreover, when the columns of
A are linearly independent (i.e., rank(A) = n, or null (A) = {0}), then

(ATA)x =0 = |AX? =0 (see Exercise 3.14)
= Ax =0
= x=0.

That is, when A has linearly independent columns, then null (ATA) = {0} and ATA, being
square, is nonsingular. Thus, nullity (A) = 0 means that the normal equations (3.11) have
precisely one solution, which must be x.

Finally, we mention that, in the case where b € col(A) (so that e = 0, and the system
Ax = b is consistent), least-squares solutions coincide with solutions in the usual sense.
This is because such solutions make the residual equal to zero in that case.
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Exercises

3.1 Show that the inner product (3.1) on IR” indeed has the property asserted in (3.2). This
property is called linearity in the 2”4 argument.

3.2

a) Observe that, for u, v € R", (u, v) = (v, u). Use this and equation (3.2) to show that,
given any real numbers a and b, and any u, v, w € R",

{(au+bv,w) = a{u,w)+b{v,w)
(called linearity in the 15targument).
b) Show that, for any pair of vectors u, v € R"” and any real numbers g, b,

(au+bv,au+bv) = allulf* + 2ab (u, v) + b*||v]* .
o) Fill in the missing details of the proof of the Pythagorean Theorem (Theorem 9).

3.3 Show that the zero vector 0 € R" is the only vector in R" which is orthogonal to itself.
3.4

a) Suppose U is the trivial subspace of IR", the one consisting of just the zero vector.
Show that U+ = R".

b) Show that for U = R", the orthogonal complement is the trivial subspace of R".

3.5 The fundamental subspaces associated with an arbitrary m-by-n matrix A are the
row space col(AT), the column space col(A), the nullspace null (A), and the left nullspace

null (AT). For each A given below, determine a basis for each of these fundamental
subspaces.

a)A:34]

b) A

Il
N o~
B W
S =

c) A

SIS
QR H
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d A =

— o o
Y I
N =R RO
N = RO

In light of Theorem 11, what orthogonality relationships should you see between the
various basis vectors? Do you?

3.6

a) Let U be the subspace of IR? spanned by (1, -1, 1). Find a basis for U+. (Hint: Exploit
the fact that col(AT)* = null (A).)

b) If V = span({(1,2,1),(1,-1,2)}), then find V*.
3.7 Isit possible for a matrix to have (1,5, —1) in its row space and (2, 1, 6) in its nullspace?
Explain.

3.8 Let A be an m-by-n matrix with rank(A) = r. What are the dimensions of null (A) and
null (AT)? Explain.

3.9 Suppose A is an m-by-n matrix. Show that

a) if x € null (ATA), then Ax is in both col(A) and null (AT).

b) null (ATA) = null (A). (Hint: col(A) N null (AT) = {0}, a result proved in part a) of
Exercise 3.12.)

¢) A and ATA have the same rank.

d) if A has (all) linearly independent columns, then AT A is nonsingular.

3.10 Using only the fact that V is an inner product space (whose inner product satisfies
Definition 15), prove that the inner product of any vector v € V with the zero vector of V
is zero.

3.11 Suppose V is an inner product space. Show that, under the derived norm (3.5), it is
impossible that [[v]| = 0 for v € V unless v = 0 (the zero vector).

3.12

a) Suppose U is a subspace of R". Show that U N U+ = {0}. Here the symbol “N”
denotes the “intersection”—that is, given two sets A and B, A N B stands for the set
of elements that are in both A and B.
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3.2 The Fundamental Subspaces

b) Suppose U is only a subset of R". What may be said about U N U* in this case? Give
an example that helps illustrate your answer.

3.13 Use Theorems 11 and 14 to show that

null(A)* = colA”)  and  null(AT) = col(A).

3.14 In the string of implications following equation (3.11), we have the statement that
(ATA)x =0 implies IAX|[*> = 0. Show this. (Hint: Recall that an inner product between
two vectors in R™ has an equivalent formulation as a matrix product; see the first bullet
following Example 27.)

3.15 In this exercise, we show that equation (3.11) is consistent. To do so, we show
ATb € col(ATA), doing so via the following “steps”:

a) Show that R" = col(ATA) ® null (ATA).
b) Use (3.8) and the result of part b), Exercise 3.9 to deduce that col(AT) = col(ATA).

¢) Explain why the equality of spaces deduced in the previous part implies a solution
to (3.11) exists.

2 -1 0
316 Let A=|4 -2| and b=|-2].
-2 1 2

a) Write out the normal equations associated with the matrix equation Ax = b. That is,
write out just what the matrix ATA and right-hand side vector ATb look like.

b) Find all least-squares solutions of Ax = b (i.e., all solutions of the normal equations).
These solutions form a subset of R%; plot this subset on the coordinate plane.

¢) What is the nullspace of A? Plot this on the same coordinate plane with your plot
from part (b).

d) What is the row space of A? Plot this on the same coordinate plane with your
plot from part (b). Find the vector which is both in the row space of A and is a
least-squares solution of Ax = b.

e) What is the column space of A? On a coordinate grid (necessarily different from the
one you have been using), sketch both this column space and the vector b. What
vector p € col(A) is closest to b?
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3 Orthogonality and Least-Squares Solutions

1 31 4
317 Let A=|2 6 2| and b=16].
1 11 3

a) Show that, for this A and b, the matrix problem Ax = b is inconsistent.

b) Solve (i.e., find all solutions) of the normal equations AT Ax = ATb. You are welcome
to use Octave along the way—for instance, in reducing an augmented matrix to
echelon form.

c) Employ the “backslash” command in Octave to solve Ax = b. That is, enter the
given matrices into variables named A and b, and then run the command A \ b.
How does this “answer” relate to your answers from parts (a) and (b)?

3.18 In class we discussed the particulars of fitting a polynomial of degree d to n prescribed
data points (x1, y1), (x2, ¥2), - . ., (Xn, Y»). In this problem, we will investigate the case where
d =1 (i.e., fitting a line); in particular, our polynomial is p(x) = ag + a;x.

a) Write out the form of A, b (what we did in class for general d) so that least-squares
solutions of

yield the “best-fit” line.

b) Describe conditions under which the rank of your matrix A (from part (a)) would be
less than 2?

c) One website lists the following numbers (perhaps they are fictitious) for different
kinds of sandwiches offered at a restaurant:

] Sandwich \ Total Fat (grams) \ Total Calories ‘
Hamburger 9 260
Cheeseburger 13 320
Quarter Pounder 21 420
Quarter Pounder w/ Cheese 30 530
Big Mac 31 560
Arch Sandwich Special 31 550
Arch Special w/ Bacon 34 590
Crispy Chicken 25 500
Fish Fillet 28 560
Grilled Chicken 20 440
Grilled Chicken Light 5 300
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d)

3.2 The Fundamental Subspaces

Treating the “Total Fat” variable as the x-coordinate, determine the least-squares
best-fit line to these data points.

For a given n-by-p matrix A, b € IR", a least squares solution x € R” of the matrix
equation Ax = b minimizes the quantity |[b — Ax|]%. In the case p = 2, if we write
x = (ag,a1), then

y1 — (a0 + a1x1)

Y2 — (ap + arxo)

Ib — Ax|? = = Y (yj-a-mx)?.
j=1

Yn — (ap + aixy)

Let us define f(aop, 1) = Z?zl(yj —ag — alxj)z, a function of two variables. (Note that
the variables in f are ap and a;; the x;s and y;s are given numbers.) Recall, from
MATH 162, that a critical point of a such a function (a location at which f might
reach a local extremum) is a point (43, a]) which simultaneously satisfies the system

of equations
aif 0 aif

8a0 B ’ 8a1

Show that there is a solution (a;, a}) of this system of equations, and that its values
are

0.

n . n X n . n n
‘- anzlx]y; (ijlx])(ZFly]) and ) = %(Zyj_”lzxj]-

2
n 2 n
”Z]':1 xj - (2/21 xj)

Use the formulas from part (d) to see that they yield the same “best fit” line for the
data in part(c) as you obtained solving the normal equations.

3.19 Write down an m-by-n matrix A for which

a)

b)

<)

the least-squares solutions of Ax = b are always (no matter the choice of b € R") the
same as the actual solutions of Ax = b. (In particular, there are no vectors b € R™
for which Ax = b is inconsistent.)

there are vectors b € IR™ for which Ax = b is inconsistent, but for all b € R", the
normal equations have a unique solution.

there are vectors b € IR™ for which Ax = b is inconsistent, but for all b € R, the
normal equations have infinitely many solutions.
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4 Selected Answers to Exercises

1.1
a) diag([3 5], 2)

1.3
a) A must be square.

b) It’s unlikely any of the 20 pairs of matrices will be equal.

1.5 Almost any pair of square matrices will do the trick.

1.7

a) If A is m-by-n with m # n, then the dimensions of AT do not allow equality of A and
AT,

1.8

a) In the long term, there are 4000 subscribing households and 6000 non-subscribers.

1.9 It is quite possible that none of your randomly generated matrices will be singular.

1.10
a) 6
b) 2-by-2, 2-by-2, 4-by-3, and 4-by-2 respectively

1.11

a) P=

_ o O O
S O O
o= OO
S O = O
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1.14 The matrix in letter (a) is in echelon form. Its 2nd gth 5thand 6t columns are pivot
columns with pivots 2, 3, 1 and 2 respectively.

The matrix in letter (c) is in echelon form. Its 15tand 3" columns are pivot columns with
pivots 1 and 3 respectively.

The matrices in letters (d) and (e) are in echelon form, both having pivot 1 in the only
pivot column, column 1.

The matrices in letters (b) and (f) are not in echelon form.

1.15
a) (11,3)

b) (4,1,3)

1.16

3x1 + 2x7
X1 + 5xo

|
o]

a)

Il
N

|
|
—_

2x1 + xp + 4x3
C) 4X1 - 2X2 + 3X3
5x1 + 2xp + 6x3

I
| H~
—_

1.18
a) There is just one solution: x = (-1,-5/2,2).
b) Solutions take the form (3/2,2,0,-5/2) + t(-2,0,1,0),t € R.

¢) There is no solution.

1.19 There is only one solution, namely (7.5, -2.5, 2).

1.20

a) There is only one choice: c; =4, ¢, =3 and ¢3 = 4.

¢) There are infinitely many choices of the constants. They all take the form

(Cl,Cz, C3) = t(—3, 4, 1) + (1, —5, 0) , teR.
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1.22 null (A) = span({(-2,1,0,0,0),(=3,0,0,0,1)})

1.23
a) Hint: Study the algorithm in simpleGE.
b) (-10/3,5/3,2,5/3)

1.24 Both systems have unique solutions: x; = (-1,2,1) and x = (3,1, -2).

1.26 Hint: If E;; adds a multiple of row j to row i, then the way to undo this is to subtract
that same multiple.

1.27
1 0 0 1 0 0
a) (i) (A1A2)7! = —y 1 0 (iii) ArA; = an 1 0
azpay —asz  —azp 1 a3 +asay azp 1
1 0 0
(iv) (A2A) ' =|-a1 1 0
—az —azp 1
1 0 0 0
- 1 0 0
b) (i) (AjArA)"! = 421
) () (ArAzAs) a3fy) — A3 —a3 I 0
21042 + (31043 — 41 — 021032043 A30043 — Aap —43 1
1 0 0 O
a1 1 0 O
iii) A3AzAq =
(iiD) AsAzAq az1 + azan1 asy 1 0

ag +4a31a43 + ax144 + a21032043 A +a32a43 43 1

1.29

a) This interpolating linear polynomial would be of degree zero (i.e., be a constant
function, one with zero slope) precisely when the two interpolation points have the
same y-coordinate.

b) i. Given n points in the plane, no two of which share the same x-coordinate, there
is a unique polynomial having degree at most n — 1 that passes through these n
points.
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1.30 In this case our permutation matrix is just the identity. Thus, solving Ly = Pbis
simply a matter of solving Ly = b using forward substitution. First, we solve

-10
Ly = Pb = | -1
-1

via backward substitution to get y = (—10,-23/3, 10). Then we solve Ux =y, which looks
like

6x1 —4xy +5x3 = -10
1 13 23
FRrEH = o3

-5x3 = 10.

This leads to the solution (2, 3, —2).
1.31 Solutions have the form (-27,-7,0) + z(-13,-5,1), z € R.
1.33 Any matrix with a row whose entries are all zero works.
1.34
a) rank(A) = 3, nullity (A) =2

b) A basis of col(A)is B ={(1,-1,0,1),(-2,3,1,2),(2,-2,4,5)

¢) One way: “Find a linear independent collection of vectors whose span is col(A).”

1.35

a) The columns of A are linearly independent, since the lack of any nonzero element in
null (A) indicates that the only linear combination of columns Ay, ..., A, of A that
yields the zero vector is

(0)A1 + (0)Az + -+ - + (0)A,,.

1.36 No.

1.37 Using a block interpretation of the product, we have

[ uq 1 [ ulv"
Uus Usv
uv = v =
| Um | | UmV |
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This illustrates that each row of uv is a scalar multiple of v. Thus, when we find the lead
nonzero entry (the pivot) in row 1 of uv and then use Elementary Operation 3 to zero out
the entries in the column below this pivot, the result will be zero in every position (i, j) of
the matrix with 7 > 1.

1.39 null (A) = {0}

1.42

a) Here are sample results, taking a = 0.75 (radians) as a “for instance”.

octave> alph = .75;
octave> A = [cos(alph) —sin(alph); sin(alph) cos(alph)];
octave> eig(A)
ans =
0.73169 + 0.681641i
0.73169 — 0.681641i

¢) We have A = BC where

V5 0 c0s(0.4637) —sin(0.4637)
B = and =1 .
0 5 sin(0.4637)  cos(0.4637)

1.43

a) For an n-by-n matrix, the eigenvalues are the roots of an n'"-degree polynomial.
Such a polynomial has n roots, though some may repeated, which means it has at
most n distinct roots. If A is 2-by-2, this means it can have at most one other root.

1.44
-1 0 . .
a) A= [ 0 1], eigenpairs: (-1, (1,0)), (1,(0,1))

b) A = cos(rt/4) —sin(m/4)[|1 O || cos(mt/4) sin(rt/4)[ |0 1
) A= sin(rt/4) cos(rt/4) [|0 —1||-sin(n/4) cos(rt/4)| |1 O

(Note: Students can get this same matrix appealing to equation (1.6) with a = 20 =
11/2, or perhaps by appealing to part (b) of Exercise 1.13; these same observations
are true of parts (c) and (d) below.), with eigenpairs (-1,(-1,1)), (1,(1,1)) (Any
rescaling of the eigenvectors is permissible.)

1.45
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-1

0
a) A = 1 , eigenpairs: (-1,1), (1,j), (1, k)
0

—_ O O

0
0
1.46

a) Three hours corresponds to a rotation through an angle of 7/4. Thus,

A = |[sin(nt/4) cos(m/4) Of.

0 0 1

cos(rt/4) —sin(mt/4) O}

1.47
a)r
octave> hPts = [0 0.5 0.5 4 4 0.5 0.5 5.5 5.5 0 0];
octave> hPts = [hPts; 0 0 4.5 45 55 7.5 7.5 8 8 0];
octave> hPts = [hPts; ones(1,11)];
octave> plot(hPts(1,:), hPts(2,:))
octave> axis(”square”)
octave> axis([-1 6 -1 9])
1.48
a) Hint: look at AS under the blocking
AS = A[S1[S: |- [Su],
and SD under the blocking
d|0]|0]---|0
0|dr|O|---]0
SD = [51‘52‘... ‘sn] 0|0 |d3|---]0
01010 dy

b) Hint: If AS = SD and S is nonsingular, then A = SDS™.

¢) Hint: Recall that det(AB) = det(A) det(B).
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2.1 The additive identity (function) in €*(a,b) is the function that is constantly zero—
that is, (x — 0). This function is differentiable (it is its own derivative) up to an order
you like (i.e., it has a k' derivative for any choice of nonnegative integer k), and all of its
derivatives are continuous.

2.2

a) Hint: Explore what would happen if {u, v} were linearly dependent.
b) 3x-y+z=0

c) Yes, this always happens. That is because, “containing the origin” means that (0, 0, 0)
must satisfy the equation Ax + By + Cz = D or, equivalently, 0 + 0+ 0 = D.

2.3

a) Hint: Show that you can take two vectors in this plane and get a sum not in the
plane—i.e., that the plane is not closed under addition.

b) 5(1,0,1) + #0,1,-1), s, teR.

¢) Hint: Since (1, -1, —1) is a normal vector to both planes, both should have equations
of the formx -y -z =D.

24

c) Perhaps the easiest way to do this is in two steps. First, one shows that each u; is
in null (H)—that is, show that Hu; = 0 for j = 1,...,4. In doing so, we demonstrate
that the set S = {u1, up, uz, ug, w1, wo, wz, wy} is a collection of vectors all of which are
from null (H). (Do you see why span(S) = span({wy, wy, w3, wy}), and thereby that
span(S) = null (H)?) Next, we can form the matrix whose columns are the vectors
in S—that is, A = [ u ‘ u ‘ us ‘ uy ‘ W ‘ Wy ‘ W3 ‘ Wy ] Then by reducing A to
echelon form, we find that the first four columns are pivot columns while the last
four are free, thereby demonstrating that only the first four are needed as a basis for
span(S).

d) (1,0,0,1) (or 1001)

2.5 IR" is the set of all n-tuples whose elements are real numbers. That is,

R" = {(x1,x2,...,x,)|each x; € R} .

2.6 Hint: Use the subspace test.

2.12
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a) Itis a basis.

¢) Itis not a basis.

2.14 dim(Z2) = n

2.15 By supposition, u € span(S), so there exist real numbers a4y, ..., a,, for which
u = a1vy +axvp+ -+ au vy .

We first show that span({vy, ..., vy, u}) is a subset of span(S). Let w € span({vy, ..., vy, u}).
Then for some choice of real numbers by, ..., b1,

w bivi +byvy + -+ + by vy, + byu

b1V1 + b2V2 + -+ bmvm + bm+1(ﬂ1V1 +avy + .-+ ame)
(b1 + bys1a1)vy + (b2 + by1a2)vo + - + (byy + by 10m) Vi

which shows w € span(S). Since w is an arbitrary element of span({vy, ..., v,;, u}), we have
that span({vy, ..., vy, u}) is a subset of span(S).

Now we must show span(S) is a subset of span({vy, ..., vy, u}). But this is much easier,
because for any element w € span(S), there are real numbers by, .. ., b, for which

W = bivi+byvo+ -+ by,

which is already a linear combination of vectors in {vy, ..., vy, u}.

2.19

a) In words, the left nullspace of A is the set of vectors v € R™ satisfying ATv = 0 or,
equivalently, satisfying vI A = 0. Using set notation, this is

null (AT) = {V eR"|Alv = 0} .

2.20

a) col(A) has basis {(2,1,-3,1),(3,0,-5,0)}.
col(AT) has basis {(1,0,3,1), (0,1, -2, —1)}.
For this particular matrix A, the dimension of each subspace is 2.

3.2
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a) As a start, we have

{(au + bv,w) = (w,au +bv) .

Now use linearity in the 2"d argument.

3.3 Suppose v € R" satisfies (v, v) = 0. Then

2

0=(v,v) = [VI* = 2 +05+--+05.

With the expression on the far right containing only perfect squares of real numbers, it
follows that each v; = 0. Since all of the components of v are zero, v is the zero vector.

3.4
a) Since 0is orthogonal to every vector in IR", the orthogonal complement of U contains

every vector.

3.5

b) A basis for:
col(AT): {(1,0,-2),(0,1, 1)}
col(A): {(1,2),(3,4)}
(the standard basis is also appropriate here) null (A): {(2, -1, 1)}
null (AT) = {0}: By convention a basis for the trivial subspace is the empty set {}.

The vectors in col(A) should be orthogonal to those in null (AT); those in col(AT) should
be orthogonal to those in null (A). Both of these relationships are realized.

3.6

a) The subspace U of R? is precisely the row space of A = [1 -1 1]. We know
U+ = col(AT)* = null (A). Finding a basis for the latter, we get {(~1,0, 1), (1,1,0)}.

3.7 Hint: col(AT)* = null (A).
3.12

a) Hint: Any vector in U (| U+ is going to be orthogonal to itself.
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3.13 Suppose A is an m-by-n matrix. Theorem 11 says null (A) = col(AT)*. Taking the
orthogonal complement of both sides, we get

null (A)* = (col(AT)1)t = col(AT),

with this last equality holding because of Theorem 14 and the fact that col(AT) is a subspace
of R".

3.16

b) Least-squares solutions form a line in the plane, and have the form (-1/2,0)+#(1/2, 1),
teR.

d) The vector which is both a least-squares solution and lies in col(AT) is (-2/5,1/5).

e) p=(-1,-21)

3.17

b) The least-squares solutions (of Ax = b) are

(29-10.1,f) = #(-1,0,1)+(29,0.1,0), t€R.

3.18
1 X1 ]/1
1 X2 Y2
a) Wehave A = |, . |[and b =
1 xy Yn
d) We have
af n a ) n
a_ﬂ() = ; 0_}—%(% —ag — alxj) = -2 ;(yj —ap— ﬂlxj)
= 2 nao+alzxj—2yj , and
j=1 j=1
af <
o - ? ;xi(yf_ao_alxj)
= Z[ao ij+alzx?—2xjyj].
=1 =1 j=1
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Thus, the system of equations in ag, a1 which arises from setting these partial deriva-
tives equal to zero is

nag +a1(;xj) — Xy =0 nag + axay = ay
or
Qxap + ﬁxal = ﬁxy ’

ap(Xjx)) + al(ij‘;T) —2xy;j=0

where we have defined a, = ij]-, ay = ijj, Bx = ij?, and By, = ij]-y]-.
Employing Cramer’s rule for a1, we get

noa
o = Qx ﬁxyy _ By —axay n(ijjyj)—(ijj)(ijj)
= = —— = :
o B e = ()= (2m)

Substituting this answer into the top equation, we get

1 1
ap = E(ay_alax) = E(Z%‘_ﬂlzx/]'
j

j
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