

MATH 231: Differential Equations with Linear Algebra

Hand-Checked Assignment #4, due date: Tues., Mar. 30, 2021

Write up, carefully and legibly, your solutions to the following problems. While you do not need to present one problem per page, please do not put problems side-by-side (i.e., no two-column format). To submit your work it must be

- scanned (all pages) to a single .pdf file (one multi-page file containing all graded problems).
- submitted to <https://www.gradescope.com> as **hc04**.

★31 The following facts hold about the given matrices and the corresponding homogeneous linear 1st order systems of DEs $\mathbf{x}' = \mathbf{A}\mathbf{x}$:

1. When $\mathbf{A} = \begin{bmatrix} 5 & 2 & -12 \\ -4 & -1 & 12 \\ 0 & -2 & -7 \end{bmatrix}$:	λ	basis eigenvectors	solns for fund'l set
	-3 (AM=GM=1)	$\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$	$e^{-3t} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$
	-1 (AM=GM=1)	$\begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix}$	$e^{-t} \begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix}$
	1 (AM=GM=1)	$\begin{bmatrix} 5 \\ -4 \\ 1 \end{bmatrix}$	$e^t \begin{bmatrix} 5 \\ -4 \\ 1 \end{bmatrix}$

General solution:

$$\mathbf{x}(t) = c_1 e^{-3t} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix} + c_3 e^t \begin{bmatrix} 5 \\ -4 \\ 1 \end{bmatrix} = \begin{bmatrix} 2e^{-3t} & 3e^{-t} & 5e^t \\ -2e^{-3t} & -3e^{-t} & -4e^t \\ e^{-3t} & e^{-t} & e^t \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}.$$

2. When $\mathbf{A} = \begin{bmatrix} 5.5 & -1.5 & 1.5 \\ 0.5 & -0.5 & -1.5 \\ -1 & -1 & 2 \end{bmatrix}$:	λ	basis eigenvectors	solns for fund'l set
	4 (AM=2, GM=1)	$\begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix}$	$e^{4t} \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix}, e^{4t} \left(t \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right)$
	-1 (AM=GM=1)	$\begin{bmatrix} 3 \\ 21 \\ 8 \end{bmatrix}$	$e^{-t} \begin{bmatrix} 3 \\ 21 \\ 8 \end{bmatrix}$

General solution:

$$\mathbf{x}(t) = c_1 e^{-t} \begin{bmatrix} 3 \\ 21 \\ 8 \end{bmatrix} + c_2 e^{4t} \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix} + c_3 e^{4t} \begin{bmatrix} -3t - 2 \\ -t \\ 2t \end{bmatrix}.$$

3. When $\mathbf{A} = \begin{bmatrix} -4 & -4 & -7 \\ 7 & 10 & 18 \\ -3 & -5 & -9 \end{bmatrix}$:	λ	basis eigenvectors	solns for fund'l set
	-1 (AM=3, GM=1)	$\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$	$e^{-t} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, e^{-t} \left(t \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \right),$

		$e^{-t} \left(\frac{1}{2}t^2 \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + t \begin{bmatrix} -3 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} \right)$
--	--	--

General solution:

$$\mathbf{x}(t) = c_1 e^{-2t} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} t-3 \\ t+2 \\ -t \end{bmatrix} + c_3 e^{-t} \begin{bmatrix} (1/2)t^2 - 3t + 5 \\ (1/2)t^2 + 2t - 3 \\ (1/2)t^2 \end{bmatrix}.$$

This problem is investigatory in nature, delving into questions which have not all been addressed in class.

- For the matrices given in numbers 2 and 3, show that each of the vector functions included in a fundamental set (3 for each of the two matrices \mathbf{A}) are, indeed, solutions of the homogeneous system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.
- Consider the matrix \mathbf{A} in number 1, along with its eigenpair $\lambda = -3$, $\mathbf{v} = \langle 2, -2, 1 \rangle$. Is there a vector \mathbf{u} which solves $(\mathbf{A} + 3\mathbf{I})\mathbf{u} = \mathbf{v}$? What do you conclude about the existence of a solution to $\mathbf{x}' = \mathbf{A}\mathbf{x}$ of the form

$$(t\mathbf{v} + \mathbf{u}) e^{-3t}, \quad \text{with} \quad (\mathbf{A} + 3\mathbf{I})\mathbf{v} = \mathbf{0} \text{ and } (\mathbf{A} + 3\mathbf{I})\mathbf{u} = \mathbf{v}?$$

(c) Consider the matrix \mathbf{A} in number 2, along with its degenerate eigenvalue $\lambda = 4$.

We have that $\mathbf{v} = \langle -3, -1, 2 \rangle$, is a basis for the corresponding 1-dimensional (since $\text{GM}=1$) eigenspace, and that $\mathbf{u} = \langle -2, 0, 0 \rangle$ satisfies $(\mathbf{A} - 4\mathbf{I})\mathbf{u} = \mathbf{v}$. Is there a vector \mathbf{w} which solves $(\mathbf{A} - 4\mathbf{I})\mathbf{w} = \mathbf{u}$? What do you conclude about the existence of a solution to $\mathbf{x}' = \mathbf{Ax}$ of the form

$$\left(\frac{1}{2!} t^2 \mathbf{v} + t \mathbf{u} + \mathbf{w} \right) e^{4t}, \quad \text{with} \quad (\mathbf{A} - 4\mathbf{I})\mathbf{v} = \mathbf{0}, \quad (\mathbf{A} - 4\mathbf{I})\mathbf{u} = \mathbf{v} \quad \text{and} \quad (\mathbf{A} - 4\mathbf{I})\mathbf{w} = \mathbf{u}?$$

(d) Under what conditions will you look for a solution to a homogeneous $\mathbf{x}' = \mathbf{Ax}$ of the form

$$(t\mathbf{v} + \mathbf{u}) e^{\lambda t}?$$

Under what conditions will you look for a solution of the form

$$\left(\frac{1}{2!} t^2 \mathbf{v} + t \mathbf{u} + \mathbf{w} \right) e^{\lambda t} \quad \text{or} \quad \left(\frac{1}{3!} t^3 \mathbf{v} + \frac{1}{2!} t^2 \mathbf{u} + t \mathbf{w} + \mathbf{z} \right) e^{\lambda t}?$$

★32 On pp. 188-189 of ODELA we learn about a 1st order linear DE system model for quantities of lead stored in 1) the blood, 2) body tissues, and 3) bones. The model is

$$\begin{bmatrix} x'_1 \\ x'_2 \\ x'_3 \end{bmatrix} = \mathbf{A} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} I_L(t) \\ 0 \\ 0 \end{bmatrix}, \quad \text{where} \quad \mathbf{A} = \begin{bmatrix} -13/360 & 272/21875 & 7/200000 \\ 1/90 & -1/35 & 0 \\ 7/1800 & 0 & -7/200000 \end{bmatrix}.$$

(a) Approximate eigenpairs for the matrix \mathbf{A} are provided at the top of p. 190. Use them to write the homogeneous solution—i.e., the solution in the case the influx into the bloodstream of lead from the environment $I_L(t) = 0$.

(b) If $I_L(t) = 0$ for a person previously poisoned with lead, what aspect of the model or solution indicates that the lead will be flushed out over time?

(c) Continue assuming that $I_L(t) = 0$, but suppose we have initial conditions $x_1(0) = 50$, $x_2(0) = 0$ and $x_3(0) = 0$; that is, we start with 50 units of lead in the blood and none in tissue nor bone. Solve the (homogeneous) IVP, and use it to write a formula for the amount $x_3(t)$ of lead in the bones. Find the approximate time t (in days) at which the level of lead in the bones is at its peak value. [Give your answer accurate to the tenths place.] Also, find the approximate time, following that peak, when the lead level in the bones has receded to no more than 0.5 units.

★33 From ODELA Section 3.6, pp. 181–183, do Exercise 3.6.5.

★34 From ODELA Section 3.6, pp. 181–183, do Exercise 3.6.8.