
 Friday, February 12th 2021

Topic:: Column space

Topic:: Linear independence

Read:: ODELA 1.6

\vec{b} , collection $(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n)$

One new term:

- so far

{ Is \vec{b} in the span of set of vectors
 { Are there weights such that a linear combination of vectors produces \vec{b} ?
 { Does a system of m equations in n unknowns have a solution?
 { Is $Ax = \vec{b}$ consistent?

- new

Is \vec{b} in the column space of A

$\text{Col}(A)$ is same as range of the map $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $f(\vec{x}) = A\vec{x}$

When we solve $Ax = \vec{b}$ we

are successful only if \vec{b} is in this range ($\text{Col}(A)$)

find all \vec{x} in the domain that "map" to \vec{b}

$\text{Null}(A)$ consists of those \vec{x} in domain that map to 0 vector

- Determine whether any/all are true by doing GE on augmented $[A \mid \vec{b}]$

$$\left[\begin{array}{c|c} \vec{u}_1 & \vec{u}_2 & \cdots & \vec{u}_n \\ \downarrow & \downarrow & \cdots & \downarrow \\ \vec{x} & = & \vec{b} \end{array} \right]$$

Can use GE to describe the column space of $A_{\{m \times n\}}$

- if RREF(A) has a pivot in every row, then $\text{col}(A) = \mathbb{R}^m$
 - when RREF(A) has a row of zeros at bottom, the story is more interesting
 example: $A = [2 \ -1 \ 5; 1 \ 1 \ 1; -1 \ 2 \ -4]$

Take a nonzero vector \vec{u}_1 in \mathbb{R}^n

- What would a vector \vec{w} in \mathbb{R}^n look like if it were in $\text{span}(\vec{u}_1)$?

What would RREF($[\vec{u}_1 \ \vec{w}]$) look like?

$\text{span}(\vec{u}_1, \vec{w}) = \text{span}(\vec{u}_1) = \text{line through origin in } \mathbb{R}^4$

- Suppose \vec{u}_2 is in \mathbb{R}^4 and is not in $\text{span}(\vec{u}_1)$.

Note how this means \vec{u}_2 goes off in another direction besides \vec{u}_1

$\text{span}(\vec{u}_1, \vec{u}_2)$, a plane, is different from $\text{span}(\vec{u}_1)$, a line

u_1, u_2 are linearly independent

What would RREF([u_1 u_2]) look like?

Do a null space problem

- make it a matrix with a nontrivial nullspace, perhaps #rows > #cols
- Write equivalent form of problem: generating 0 vector as lin.comb. cols of A
Why does a nontrivial soln exist?

Geometrically, a nontrivial soln describe nontrivial paths to 0

- Defn: linear independence

Same as saying, with vectors at hand, only path to 0 is never to leave

A statement about a collection

linear dependence is the opposite

Test for it

collection containing just one vector?

two L.I./L.D. vectors

RREF as a test

Given a matrix $A_{m \times n}$ can discuss

- null space — consists of vectors $\vec{x} \in \mathbb{R}^n$ satisfying $A\vec{x} = \vec{0}$
- column space — consists of all vectors \vec{b} (destinations) that make $A\vec{x} = \vec{b}$ consistent

Ex.) Describe the $\text{col}(A)$, where $A = \begin{bmatrix} 2 & -1 & 5 \\ 1 & 1 & 1 \\ -1 & 2 & -4 \end{bmatrix}$

Want to describe possible "destinations" $\vec{b} = \langle b_1, b_2, b_3 \rangle$ — i.e. columns we can augment to A so that the problem $A\vec{x} = \vec{b}$ is consistent.

$$\left[\begin{array}{ccc|c} 2 & -1 & 5 & b_1 \\ 1 & 1 & 1 & b_2 \\ -1 & 2 & -4 & b_3 \end{array} \right] \xrightarrow{r_1 \leftrightarrow r_2} \left[\begin{array}{ccc|c} 1 & 1 & 1 & b_2 \\ 2 & -1 & 5 & b_1 \\ -1 & 2 & -4 & b_3 \end{array} \right]$$

$$\begin{aligned} 2r_3 + r_2 \rightarrow r_2 \\ \sim \left[\begin{array}{ccc|c} 1 & 1 & 1 & b_2 \\ 0 & 3 & -3 & b_1 + 2b_3 \\ -1 & 2 & -4 & b_3 \end{array} \right] \end{aligned}$$

$$\begin{aligned} r_1 + r_3 \rightarrow r_3 \\ \sim \left[\begin{array}{ccc|c} 1 & 1 & 1 & b_2 \\ 0 & 3 & -3 & b_1 + 2b_3 \\ 0 & 3 & -3 & b_2 + b_3 \end{array} \right] \end{aligned}$$

$$\begin{aligned} r_3 - r_2 \rightarrow r_3 \\ \sim \left[\begin{array}{ccc|c} 1 & 1 & 1 & b_2 \\ 0 & 3 & -3 & b_1 + 2b_3 \\ 0 & 0 & 0 & b_3 - b_2 - b_1 \end{array} \right] \end{aligned}$$

(row) echelon form

To be consistent, need $b_3 - b_2 - b_1 = 0$ one constraint on the 3 components of \vec{b}

$$\vec{b} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \text{ is in } \text{Col}(A)$$

So $\text{Col}(A)$ has 2 degrees of freedom

but $\vec{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ isn't.

$$\begin{bmatrix} 7 \\ -20 \\ -13 \end{bmatrix}$$

Say I have a vector $\vec{v}_1 \in \mathbb{R}^m$

Ex. $\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ -3 \\ 1 \end{bmatrix}$

What would a \vec{w} look like if it is in $\text{span}(\vec{v}_1)$?

Perhaps: $\vec{w} = \begin{bmatrix} 4 \\ 2 \\ -6 \\ 2 \end{bmatrix} + \begin{bmatrix} -6 \\ -3 \\ 9 \\ -3 \end{bmatrix}$, etc.

What if we built a matrix from \vec{v}_1, \vec{w} and took it to echelon form?

$$\left[\begin{array}{c|c} \vec{v}_1 & \vec{w} \\ \downarrow & \downarrow \end{array} \right] \xrightarrow{\text{REF}} \left[\begin{array}{c|c} 1 & * \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{array} \right]$$

$$\vec{v}_1 \cdot c = \vec{w}$$

$$\text{span}(\vec{v}_1, \vec{w}) = \text{span}(\vec{v}_1)$$

On the other hand, if select \vec{v}_2 not in span of \vec{v}_1 ,

then building a matrix from \vec{u}_1, \vec{u}_2 leads to RREF

$$\left[\begin{array}{c|c} \vec{u}_1 & \vec{u}_2 \\ \downarrow & \downarrow \end{array} \right] \xrightarrow{\text{RREF}} \left[\begin{array}{cc|c} 1 & 0 & \\ 0 & 1 & \\ \vdots & & 1 \\ 0 & 0 & \end{array} \right]$$

We might say \vec{u}_1, \vec{u}_2 are linearly independent.

$\text{span}(\vec{u}_1, \vec{u}_2)$ includes more things than $\text{span}(\vec{u}_1)$

Take \vec{u}_1, \vec{u}_2 linearly independent and a third vector \vec{w} .

If \vec{w} is in $\text{span}(\vec{u}_1, \vec{u}_2)$:

$$\left[\begin{array}{ccc} \vec{u}_1 & \vec{u}_2 & \vec{w} \\ \downarrow & \downarrow & \downarrow \end{array} \right] \xrightarrow{\text{RREF}} \left[\begin{array}{ccc|c} 1 & 0 & & * \\ 0 & 1 & & * \\ 0 & 0 & & 0 \\ \vdots & & & \vdots \\ 0 & 0 & & 0 \end{array} \right]$$

If \vec{w} is not in span of \vec{u}_1, \vec{u}_2 , then

$$\left[\begin{array}{ccc} \vec{u}_1 & \vec{u}_2 & \vec{w} \\ \downarrow & \downarrow & \downarrow \end{array} \right] \xrightarrow{\text{RREF}} \left[\begin{array}{ccc|c} 1 & 0 & 0 & \\ 0 & 1 & 0 & \\ 0 & 0 & 1 & \\ 0 & 0 & 0 & \\ \vdots & \vdots & \vdots & \end{array} \right]$$

$\text{span}(\vec{u}_1, \vec{u}_2, \vec{w})$ includes new destinations not found in $\text{span}(\vec{u}_1, \vec{u}_2)$.

Say a collection of vectors $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n \in \mathbb{R}^m$ is linearly independent if (precisely when) the only weights c_1, c_2, \dots, c_n that produce, under linear combination

$$\overset{\leftarrow}{0} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_n \vec{u}_n,$$

the zero vector that work are $c_1 = c_2 = \dots = c_n = 0$.

When $\vec{u}_1, \dots, \vec{u}_n$ are not linearly independent, say they are linearly dependent.

Equivalent notions:

$\{\vec{u}_1, \dots, \vec{u}_n\}$ L.I.

$$\text{RREF } \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \dots & \vec{u}_n \end{bmatrix} = \begin{bmatrix} 1 & & & 0 \\ 0 & 1 & \dots & 1 \\ 0 & \dots & 0 \\ 0 & \dots & 0 \end{bmatrix}$$
$$\Leftrightarrow \text{Null} \left(\begin{bmatrix} u_1 & u_2 & \dots & u_n \\ \downarrow & \downarrow & & \downarrow \end{bmatrix} \right) = \{0\}.$$

$\{\vec{u}_1, \dots, \vec{u}_n\}$ L.D.

$\begin{bmatrix} \vec{u}_1 & \dots & \vec{u}_n \end{bmatrix}$ has at least one free column

\Leftrightarrow some column \vec{u}_j is in span of

the remaining columns.