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Span, linear combination, and column space

We have seen that any system of linear equations can be restated in other, equivalent ways. That
is, the problem

Find all solutions to the system of linear equations

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1

a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn “ b2
...

am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn “ bm

(1)

can be formulated either as the matrix equation

Solve

Ax “ b, where A “

»

————–

a11 a12 ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2n
...

...
...

am1 am2 ¨ ¨ ¨ amn

fi

����fl
and b “

»

————–

b1

b2
...

bm

fi

����fl
(2)

or as the vector equation

Solve »

————–

a11

a21
...

am1

fi

����fl
x1 `

»

————–

a12

a22
...

am2

fi

����fl
x2 ` ¨ ¨ ¨ `

»

————–

a1n

a2n
...

amn

fi

����fl
xn “

»

————–

b1

b2
...

bm

fi

����fl
. (3)

If a solution exists, in any of the formulations (1)–(3), we say the problem is consistent.

Under formulation (3), we have employed the terms linear combination and span. Specifically, if
weights x1, x2, . . . , xn exist that make the two sides of (3) equal, then

b “

»

————–

b1

b2
...

bm

fi

����fl
is a linear combination of a1 “

»

————–

a11

a21
...

am1

fi

����fl
, a2 “

»

————–

a12

a22
...

am2

fi

����fl
, . . . an “

»

————–

a1n

a2n
...

amn

fi

����fl
.

We are saying the same thing when we use the words, ”b is in the span of the columns of A,” or
more concisely, ”b is in the column space of A,” a phrase which can be taken to mean Ax “ b is
consistent.
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Linear independence

The one vector which, regardless of the specific contents of A, is guaranteed to be in its column
space, is the zero vector 0 P Rm. Indeed, one can take all weights to be zero to produce it.

0 “ 0 ¨ a1 ` 0 ¨ a2 ` ¨ ¨ ¨ ` 0 ¨ an “ A0.

But one wonders if some other vector c “

»

——–

c1
...

cn

fi

��fl of weights, not all zero, can result in the zero vector:

0 “ c1a1 ` c2a2 ` ¨ ¨ ¨ ` cnan “ Ac.

If there is such a nonzero vector of weights—that is, if the null space of A contains a nontrivial
c—we say the columns a1, . . . , an are linearly dependent. If the only way to write 0 as a linear
combination of the columns of A is through taking each weight c1 “ c2 “ ¨ ¨ ¨ “ cn “ 0, then the
columns of A are said to be linearly independent.

Basis and dimension

Section 1.7.1 describes vector spaces as collections of objects endowed with an algebraic structure
which plants them in their own self-contained universe. Each of R, R2, R3, etc. fits the definition.
The vectors »

—–
1
0
0

fi

�fl ,

»

—–
0
1
0

fi

�fl ,

»

—–
0
0
1

fi

�fl

span R3 (that is, every vector is a linear combination of these), and are linearly independent; we
call such a collection a basis of R3. There are other bases one can use in R3. For instance, it is also
true that the collection »

—–
1
0
0

fi

�fl ,

»

—–
1
1
0

fi

�fl ,

»

—–
1
1
1

fi

�fl

spansR3 and is linearly independent. In fact, there are (infinitely) many collections of three vectors
fromR3 which both span and are linearly independent. But you could not span all ofR3 with just
two vectors (too few), and four vectors from R3 are always linearly dependent. Any basis for R3

will always involve three vectors, making the dimension of R3 equal to 3.

Similar considerations lead us to conclude that any linearly independent spanning set of vectors
from R2 contains 2 vectors, so the dimension of R2 is 2. A linearly independent spanning set of
vectors in R4 contains 4 vectors, so the dimension of R4 is 4. In general, the dimension of Rn is n.
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Subspaces, rank and nullity

Within R3, the collection S of vectors consisting of those with third coordinate zero form their own
self-contained universe in the sense that, if you take a linear combination of vectors from S, you’ll
get another vector in S. Since the vectors

»

—–
1
0
0

fi

�fl ,

»

—–
0
1
0

fi

�fl

lie in S, are linearly independent, and span S (every vector in S is a linear combination of these
two with weights chosen appropriately), these vectors form a basis of S, making S an object of
dimension 2. Since S lies inside R3, we call it a 2-dimensional subspace of R3.

Two dimensional subspaces ofR3 are quite abundant, when you look for them. In fact, if you take
any two linearly independent vectors u, v in R3, their span, the collection of destinations you can
reach through linear combinations

cu ` dv,

will form a plane that passes through the origin lying in R3 and, once again, serves as a self-
contained universe of objects. Conversely, if you start with any plane in R3 containing the origin,
any basis (linearly independent spanning set) of that plane will contain exactly two vectors, no
more and no less.

The one-dimensional subspaces consist of those vectors spanned by a single nonzero vector, the
lines which pass through the origin. As with two-dimensional subspaces of R3, the 1-dimensional
subspaces abound. Together, these amount to almost all the subspaces of R3, though there are
two more lurking in plain sight. One is R3, itself, the only 3-dimensional subspace that the 3-
dimensional vector spaceR3 can contain. And the other is the trivial subspace, the self-contained
universe consisting of only the zero-vector itself t0u, said to be 0-dimensional.

Naturally, analogous statements can be made withinR4, which has 0-, 1-, 2-, 3- and 4-dimensional
subspaces.

Example 1:

Let’s consider one subspace of R4, the column space of the 4-by-5 matrix

A “

»

————–

2 4 3 1 8
3 6 2 4 7

´1 ´2 2 ´4 3
2 4 ´1 5 0

fi

����fl
.

Naturally, the columns of A span the column space, and they reside in R4. But they may not
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all be linearly independent. Indeed, by looking at RREF, we see they are not:

A “

»

————–

2 4 3 1 8
3 6 2 4 7

´1 ´2 2 ´4 3
2 4 ´1 5 0

fi

����fl
„

»

————–

1 2 0 2 1
0 0 1 ´1 2
0 0 0 0 0
0 0 0 0 0

fi

����fl
.

The 2nd , 4th and 5th columns of A are each in the spans of preceding columns, which means
all the destinations inR4 made possible through taking linear combinations of the columns of
A are uniquely writeable as linear combinations of just its first and third columns. Thus, the
column space of A is a 2-dimensional subspace of R4 with basis

»

————–

2
3

´1
2

fi

����fl
and

»

————–

3
2
2

´1

fi

����fl
.

Example 2:

Consider now the null space of the matrix A appearing in the previous example. To find it,
we solve Ax “ 0, and so deal with the augmented matrix

A “

»

————–

2 4 3 1 8 0
3 6 2 4 7 0

´1 ´2 2 ´4 3 0
2 4 ´1 5 0 0

fi

����fl
„

»

————–

1 2 0 2 1 0
0 0 1 ´1 2 0
0 0 0 0 0 0
0 0 0 0 0 0

fi

����fl
.

The final column is for the right-hand side zero vector, so there are five columns associated
with variables x1, x2, . . . , x5. Of these, x2, x4 and x5 are free. If we give to these the new names

x2 “ r, x4 “ s, and x5 “ t,

the first two rows of RREF yield

x1 ` 2x2 ` 2x4 ` x5 “ 0
x3 ´ x4 ` 2x5 “ 0

+

ñ
#

x1 “ ´2r ´ 2s ´ t
x3 “ s ´ 2t

Thus, the null space of A consists of vectors
»

——————–

x1

x2

x3

x4

x5

fi

������fl
“

»

——————–

´2r ´ 2s ´ t
r

s ´ 2t
s
t

fi

������fl
“ r

»

——————–

´2
1
0
0
0

fi

������fl
` s

»

——————–

´2
0
1
1
0

fi

������fl
` t

»

——————–

´1
0

´2
0
1

fi

������fl
, r, s, t real nos.,
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making the collection of three vectors
»

——————–

´2
1
0
0
0

fi

������fl
,

»

——————–

´2
0
1
1
0

fi

������fl
,

»

——————–

´1
0

´2
0
1

fi

������fl

a linearly independent spanning set (i.e., a basis) generating the null space of A.

One observation that holds not just in these two examples, but holds for all matrices, is that the
count of pivot columns in A, a number known as the rank of A, always reveals the dimension of
the column space of A. On the other hand, the number of free columns in A, what we call the
nullity of A, always reveals the dimension of the null space of A.

Some additional questions to ponder

1. Can a single vector make up a linearly independent collection? What requirements must be
placed on the vector for it to be so?

2. How do you check whether an arbitrary collection of vectors in Rm is linear independent?

3. Granting the answer to the previous question still applies, is it possible to do something
simpler when there are only two vectors in the collection?

4. How do you check whether a vector b is in the column space of a given matrix A?

5. Say you have a collection of vectors which is linearly dependent. Can you, by adding one or
more vectors to this collection, obtain a larger collection which is linearly independent?

6. Say you have a collection of vectors which is linearly independent. Can you, by removing
one or more vectors from the collection, obtain a smaller collection that is linearly dependent?

7. What does the span of a collection of two linearly independent vectors in R3 look like
geometrically? How does your answer change if the two vectors are parallel?

8. If a collection of two or more vectors is linearly dependent, must one of the vectors be in the
span of the others?

9. If A is m-by-n, which of Rm or Rn is the Euclidean space that contains the column space of
A? Which one contains the null space of A?

10. An argument was made above that lines and planes which include the zero vector are self-
contained universes. Is this not true of all lines and planes? In particular, if you consider a
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line such as x ` 2y “ 1 which lies in the plane but does not contain the origin, and you take a

vector such as

«
3

´1

�

whose head lies on this line (when placed in standard position), would

scalar multiples of this vector also lie on the line?
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Consider the matrix

a

Describe the column space

Note Any Io in cot space would be a linear comb

x x x

so would be a 3 1 rector 1123

So we could build an augmented matrix

i i L L

take to Retweet row echelon form and observe

any requirements
to make the problem consistent



Note

I L li L

No bottom row of
Zeros to left of
augmentation

far

No criteria on rake bi bi b's

Any f c 1123 makes this system AI D
consistent

Col A is all of IR i.e All vectors from

IR can be written as linear courts of cols in A

So it is valid to claim that

til
form a spanning set for IR



Moreover

y
no free cols

The rectors

Hill L
are Linearly independent

Definition Any spanning set that
is also linearly independent

is called a basis

III till L
is a basis for IR



Ex Is there another basis for IR

Howabout

It spans IR f The set ofvectors is

Is it L I Yes a basis for IR

Criteria for being a basis of IRS

Collection consists only of things coming
fromIRS

mustspan IR
Checked what RREF looked like for a matrix
fault from collection

Collector
ofvectors

at p i

I t



Matrix needs to be square
3 3

No free cols

Notice If you start
with

III lil.fi li
since the matrix resulting

RREF

I Gg Ihrig
can't be so

Onthe other heat

III III
also can't be a basis

II il't L



can t span
all of 3

Fact All bases for IR consist of 3 linearly L
vectors from IR So let's call the dimension

of 1733 3

Broader context

In IR In any positive integer
Every basis

consists of n linearly iad

vectors from IR

There are infinitely manypossible
bases

n.ru tl l l l
n vectors

Every
basis for IR has exactly n vectors

in it so d.HR n



Def The i of a vector space is the size

of any basis
of that space

Each of IR IR IR
are erectorspaces

Inside a vector space there can exist other

vector spaces called subspaces

Defn Call a set 5 contained in a vector space V
That is closed under addition and scalar multiplication

a subspace of

Ex consider the scalar multiples of

S tf te R

s inches TE



but not

Notice that

if you
rescale an item in S the newthing is in 5

it T t
rescaling taken anotherthing
factou from in S

S

Mrm generally

it es sie

n

dosimwattit

f'sI It it
s factors fromS also ins



This S span being closedunder addition and

scalar multiplication and consistingofvectors in IR is a

subspaces of IR The singlevector serves as a basis

for S as it represents a L I set that spans S Thus having

a basis w just a single vector S is a one dimensional

subspace of 1124


