Math 231, Mon 15-Feb-2021 -- Mon 15-Feb-2021
Differential Equations and Linear Algebra
Spring 2020

Due:: HCO1 at 11 pm

Other calendar items

Wk 3, Mo

Topic:: Basis and dimension
Topic:: Vector subspaces
Read:: ODELA 1.7-1.8
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Span, linear combination, and column space

We have seen that any system of linear equations can be restated in other, equivalent ways. That
is, the problem

Find all solutions to the system of linear equations
apxy +apxy + -+ apx, = b
anx1 +apxy + - +aux, = by
@
A1 X1 + ApX2 + -+ ApXy = by
can be formulated either as the matrix equation
Solve
A a2 e g b
Ay Ay - )
Ax =D, where A= ] ] and b= . (2)
Am1 Gm2 - Amn bm
or as the vector equation
Solve
an a2 a1n by
21 ax A2n )
T N e R B R R A ®)
Am1 Am2 Amn bm

If a solution exists, in any of the formulations (1)—(3), we say the problem is consistent.

Under formulation (3), we have employed the terms linear combination and span. Specifically, if
weights x1, x, . .., x, exist that make the two sides of (3) equal, then

by an a2 a1,

by o o a2 ax a2y
b= . is a linear combinationof a;j=| | |, a=]| . |, ... a, =

b Am1 Am2 Amn

We are saying the same thing when we use the words, ”b is in the span of the columns of A,” or
more concisely, “b is in the column space of A,” a phrase which can be taken to mean Ax = b is

consistent.
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Linear independence

The one vector which, regardless of the specific contents of A, is guaranteed to be in its column
space, is the zero vector 0 € R™. Indeed, one can take all weights to be zero to produce it.

0=0-a3+0-aa+---+0-a, = AO0.

a1
But one wonders if some other vector ¢ = | : | of weights, not all zero, can result in the zero vector:

Cn
0 = cia +cpap +---+cya, = Ac.

If there is such a nonzero vector of weights—that is, if the null space of A contains a nontrivial
c—we say the columns ay, ..., a, are linearly dependent. If the only way to write 0 as a linear
combination of the columns of A is through taking each weight c; = ¢, = --- = ¢, = 0, then the
columns of A are said to be linearly independent.

Basis and dimension

Section 1.7.1 describes vector spaces as collections of objects endowed with an algebraic structure
which plants them in their own self-contained universe. Each of R, R?, IR3, etc. fits the definition.
The vectors

1 0
0f, 1,
0 0 1

span IR? (that is, every vector is a linear combination of these), and are linearly independent; we
call such a collection a basis of R3. There are other bases one can use in R3. For instance, it is also
true that the collection

1 1 1
0f, 1{,
0 0

spans IR? and is linearly independent. In fact, there are (infinitely) many collections of three vectors
from IR® which both span and are linearly independent. But you could not span all of R? with just
two vectors (too few), and four vectors from R® are always linearly dependent. Any basis for R?
will always involve three vectors, making the dimension of R® equal to 3.

Similar considerations lead us to conclude that any linearly independent spanning set of vectors
from R? contains 2 vectors, so the dimension of R? is 2. A linearly independent spanning set of
vectors in R* contains 4 vectors, so the dimension of R* is 4. In general, the dimension of R" is n.
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Subspaces, rank and nullity

Within R3, the collection S of vectors consisting of those with third coordinate zero form their own
self-contained universe in the sense that, if you take a linear combination of vectors from S, you'll
get another vector in S. Since the vectors

lie in S, are linearly independent, and span S (every vector in S is a linear combination of these
two with weights chosen appropriately), these vectors form a basis of S, making S an object of
dimension 2. Since S lies inside R?, we call it a 2-dimensional subspace of R3.

Two dimensional subspaces of R® are quite abundant, when you look for them. In fact, if you take
any two linearly independent vectors u, v in R3, their span, the collection of destinations you can
reach through linear combinations

cu +dv,

will form a plane that passes through the origin lying in R®> and, once again, serves as a self-
contained universe of objects. Conversely, if you start with any plane in IR® containing the origin,
any basis (linearly independent spanning set) of that plane will contain exactly two vectors, no
more and no less.

The one-dimensional subspaces consist of those vectors spanned by a single nonzero vector, the
lines which pass through the origin. As with two-dimensional subspaces of IR?, the 1-dimensional
subspaces abound. Together, these amount to almost all the subspaces of IR3, though there are
two more lurking in plain sight. One is IR, itself, the only 3-dimensional subspace that the 3-
dimensional vector space IR can contain. And the other is the trivial subspace, the self-contained
universe consisting of only the zero-vector itself {0}, said to be 0-dimensional.

Naturally, analogous statements can be made within R*, which has 0-, 1-, 2-, 3- and 4-dimensional
subspaces.

Example 1:

Let’s consider one subspace of R*, the column space of the 4-by-5 matrix

W
(@)
N
i~
S W 3 @

Naturally, the columns of A span the column space, and they reside in R*. But they may not
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all be linearly independent. Indeed, by looking at RREF, we see they are not:

2 4 3 18 120 21

A — 3 6 2 47 N 001 -1 2
-1 -2 2 —4 3 000 00O

2 4 -1 50 000 0O

The 2nd ,4thand 5th columns of A are each in the spans of preceding columns, which means
all the destinations in IR* made possible through taking linear combinations of the columns of
A are uniquely writeable as linear combinations of just its first and third columns. Thus, the
column space of A is a 2-dimensional subspace of R* with basis

2 3

3 2
and

-1 2

2 -1

Example 2:

Consider now the null space of the matrix A appearing in the previous example. To find it,
we solve Ax = 0, and so deal with the augmented matrix

2 4 3 180 120 210

A — 3 6 2 470 N 001 -12020
-1 -2 2 -4 30 000 O0O0O

2 4 -1 500 000 O0O0O

The final column is for the right-hand side zero vector, so there are five columns associated
with variables x1, x, . .., x5. Of these, x2, x4 and x5 are free. If we give to these the new names

Xy =7, X4 =S, and X5 = t,
the first two rows of RREF yield

X1+ 2% +2x4+x5 =0 xp=-2r—2s—t
=
X3 — X4 +2x5 =0

Thus, the null space of A consists of vectors

x1 [ —2r — 25 — ] -2 -2 -1
X7 r 1 0 0
x3| = s=2t| =r| 0| +s 11 +¢t]-2]1, r,s,t real nos.,
X4 S 0 1 0
| X5 | | t] | 0] | 0] | 1]
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making the collection of three vectors

) -2 -1
1 0 0
0], 1], -2
0 1 0

| 0] | 0] 1]

a linearly independent spanning set (i.e., a basis) generating the null space of A.

One observation that holds not just in these two examples, but holds for all matrices, is that the

count of pivot columns in A, a number known as the rank of A, always reveals the dimension of

the column space of A. On the other hand, the number of free columns in A, what we call the

nullity of A, always reveals the dimension of the null space of A.

Some additional questions to ponder

1.

10.

Can a single vector make up a linearly independent collection? What requirements must be
placed on the vector for it to be so?

How do you check whether an arbitrary collection of vectors in R"™ is linear independent?

Granting the answer to the previous question still applies, is it possible to do something
simpler when there are only two vectors in the collection?

How do you check whether a vector b is in the column space of a given matrix A?

. Say you have a collection of vectors which is linearly dependent. Can you, by adding one or

more vectors to this collection, obtain a larger collection which is linearly independent?

Say you have a collection of vectors which is linearly independent. Can you, by removing
one or more vectors from the collection, obtain a smaller collection that is linearly dependent?

What does the span of a collection of two linearly independent vectors in R* look like
geometrically? How does your answer change if the two vectors are parallel?

. If a collection of two or more vectors is linearly dependent, must one of the vectors be in the

span of the others?

. If A is m-by-n, which of R™ or R" is the Euclidean space that contains the column space of

A? Which one contains the null space of A?

An argument was made above that lines and planes which include the zero vector are self-
contained universes. Is this not true of all lines and planes? In particular, if you consider a
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line such as x 4+ 2y = 1 which lies in the plane but does not contain the origin, and you take a

3
vector such as . whose head lies on this line (when placed in standard position), would

scalar multiples of this vector also lie on the line?
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