Math 231, Wed 17-Feb-2021 -- Wed 17-Feb-2021
Differential Equations and Linear Algebra
Spring 2020

Note:: Ash Wednesday
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Last time:

- Said the collections

are vector spaces, n = 1, 2,

N

are n-dimensional
there are many(!) bases for R'n
every basis of R"n contains exactly n L.I. vectors from R'n

- Said there are subspaces lying inside R"n
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Descriptions of the subspaces of
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Not just any collection of vectors found in R"n is a subspace. Give example e ﬁZ
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MATH 231 Lecture Notes
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Key feature of a subspace: closed under addition and scalar mult.

Examples of subspace relationships:
. Gi i -vectors, their(span is a subspace of R'm

1. Given any collection of m

==> If A is m-by-n, Col(A) is a subspace of R'm
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2. Given any m-by-n matrix,
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Null(A) is a subspace of R'n
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Ql: Can we find bases fo and Col(A)? -

Note: The columns of A "span™ the column space Col(A).

Finding a basis for Col(A) is a matter of "pairing down"

to a L.I. collection.

Example: A=[24318;36247; -1-22-43;24-152¢0] m

2 % 2 1 %
2 ¢ L 41
1 -2 2 -1 3

g -
¥

—
o o
> O

!

Define: rank(A) and nullity(A).
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Example: Having found RREF(A),
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is there another basis for Col(A) we can see?
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MATH 231 Lecture Notes

Example: (a) Find a basis for the collection of vectors

Q2:

Q3:

To

<s - 2t, 3s + 2w, s + t + w, t-3w>
(b) We called what we found a basis, which presumes this
collection is a subspace of something. What larger
space does it reside in? How do we know it is a subspace?
(c) Can you write a matrix A whose column space corresponds
to this collection of vectors?
(d) Can our basis be "enhanced" in order to create a
basis for R"4?

Suppose b is a nonzero vector, and AXx = b is consistent.

Do the solutions of Ax = b form a subspace of R"n?

(If there is time)

Visit the website https://pad.disroot.org/p/m231-17feb2021
and write, as a class, things we can conclude in each setting.
consider

linear independence of functions on an interval
1, sin"2 x, cos”2 x are L.D.
specification of interval is important!
Example: x and |x| on (0,\infty) vs. (-\infty,\infty)
Test:
Form n-by-n matrix, fns along top row, derivs. up to order (n-1) down.
If at some t\in I, A(t) has no free col., then fns are L.I. on I.
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