
 Wednesday, February 17th 2021

 Note:: Ash Wednesday

 Wednesday, February 17th 2021

Wk 3, We

Topic:: Bases for null, column spaces

~~Topic: Dimension~~

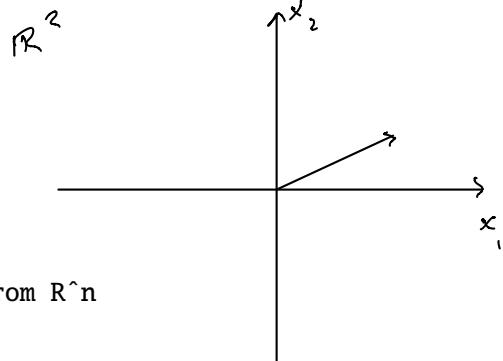
Read:: ODELA 1.8 - 1.9

~~HW 7: Due 17 Feb 2021~~

~~HW 7: Due 17 Feb 2021~~

Last time:

- Said the collections \mathbb{R}^n are vector spaces, $n = 1, 2, \dots$
 are n -dimensional
 there are many(!) bases for \mathbb{R}^n
 every basis of \mathbb{R}^n contains exactly n L.I. vectors from \mathbb{R}^n
- Said there are subspaces lying inside \mathbb{R}^n



Descriptions of the subspaces of \mathbb{R}^2 : \mathbb{R}^2 itself, lines that include the origin (1-dim' subspaces) $\xrightarrow{\text{has}}$ \mathbb{R}^2 has trivial subspace $\{\vec{0}\}$ (0-dim')

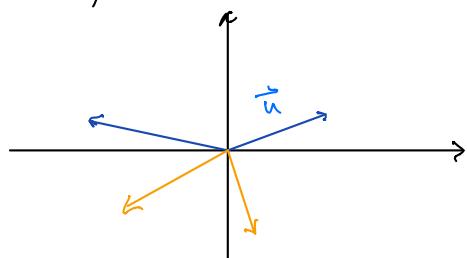
\mathbb{R}^3 : 1-dim' subspaces are lines thru the origin
 2-dim' subspaces are planes thru the origin

\mathbb{R}^8 ?

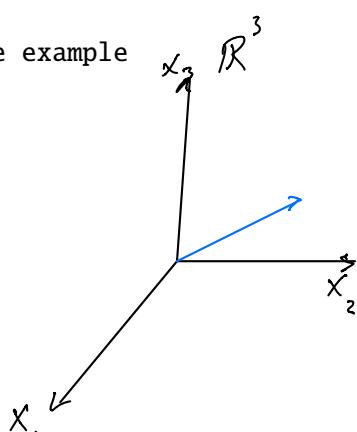
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Not just any collection of vectors found in \mathbb{R}^n is a subspace. Give example

In \mathbb{R}^2 , take $S = \{ \langle x_1, x_2 \rangle \mid x_2 \geq 0 \}$



Note: $\vec{u} \in S$
 but $(-1)\vec{u}$ is not $\in S$
 S is not closed under



scalar mult., so it is
not a subspace of \mathbb{R}^2 .

Key feature of a subspace: closed under addition and scalar mult.

Examples of subspace relationships:

1. Given any collection of m -vectors, their span is a subspace of \mathbb{R}^m
 \Rightarrow If A is m -by- n , $\text{Col}(A)$ is a subspace of \mathbb{R}^m

$\text{span} \left(\begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -1 \\ 2 \end{bmatrix} \right)$ is a subspace of \mathbb{R}^4

2. Given any m -by- n matrix, $\text{Null}(A)$ is a subspace of \mathbb{R}^n

Closed under rescaling? $\vec{x} \in \text{null}(A)$ ($\Rightarrow A\vec{x} = \vec{0}$), true? $A(t\vec{x}) = \vec{0}$?

, , , addition? $\vec{x}_1, \vec{x}_2 \in \text{null}(A)$ ($\Rightarrow A\vec{x}_1 = \vec{0}, A\vec{x}_2 = \vec{0}$)
 true? $A(\vec{x}_1 + \vec{x}_2) = \vec{0}$?

Q1: Can we find bases for Null(A) and Col(A)?

Note: The columns of A "span" the column space $\text{Col}(A)$.

Finding a basis for $\text{Col}(A)$ is a matter of "pairing down" to a L.I. collection.

Example: $A = [2 \ 4 \ 3 \ 1 \ 8; 3 \ 6 \ 2 \ 4 \ 7; -1 \ -2 \ 2 \ -4 \ 3; 2 \ 4 \ -1 \ 5 \ 0]$

$$A = \begin{bmatrix} 2 & 4 & 3 & 1 & 8 \\ 3 & 6 & 2 & 4 & 7 \\ -1 & -2 & 2 & -4 & 3 \\ 2 & 4 & -1 & 5 & 0 \end{bmatrix}$$

P F P F F

$\text{Col}(A)$ is spanned by $\begin{bmatrix} 2 \\ 3 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 6 \\ -2 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ -4 \\ 5 \end{bmatrix}, \begin{bmatrix} 8 \\ 7 \\ 3 \\ 0 \end{bmatrix}$

Basis for $\text{Col}(A)$:

$$\begin{bmatrix} \vec{u}_1 \\ \vec{u}_2 \end{bmatrix}$$

Define: rank(A) and nullity(A).

$\left. \begin{array}{l} \text{rank}(A) = \# \text{ of pivot cols in } A \\ \text{nullity}(A) = \# \text{ of free cols in } A \end{array} \right\} \text{as revealed by RREF}$

Example: Having found RREF(A), is there another basis for $\text{Col}(A)$ we can see?

Example: (a) Find a basis for the collection of vectors

$$\langle s - 2t, 3s + 2w, s + t + w, t - 3w \rangle$$

(b) We called what we found a basis, which presumes this collection is a subspace of something. What larger space does it reside in? How do we know it is a subspace?

(c) Can you write a matrix A whose column space corresponds to this collection of vectors?

(d) Can our basis be "enhanced" in order to create a basis for \mathbb{R}^4 ?

Q2: Suppose b is a nonzero vector, and $Ax = b$ is consistent.

Do the solutions of $Ax = b$ form a subspace of \mathbb{R}^n ?

Q3: (If there is time)

Visit the website <https://pad.disroot.org/p/m231-17feb2021> and write, as a class, things we can conclude in each setting.

To consider

- linear independence of functions on an interval

$1, \sin^2 x, \cos^2 x$ are L.D.

specification of interval is important!

Example: x and $|x|$ on $(0, \infty)$ vs. $(-\infty, \infty)$

Test:

Form n-by-n matrix, fns along top row, derivs. up to order $(n-1)$ down.

If at some $t \in I$, $A(t)$ has no free col., then fns are L.I. on I .

Fact: ① $\dim(\text{Col}(A)) = \text{rank}(A)$
 ② $\dim(\text{Null}(A)) = \text{nullity}(A)$

$$A = \begin{bmatrix} 2 & 4 & 3 & 1 & 8 \\ 3 & 6 & 2 & 4 & 7 \\ -1 & -2 & 2 & -4 & 3 \\ 2 & 4 & -1 & 5 & 0 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 2 & 0 & 2 & 1 \\ 0 & 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \downarrow$$

$\text{Null}(A)$ involves solving $A\vec{x} = \vec{0}$

In RREF

Row 1 says $x_1 + 2x_2 + 2x_4 + x_5 = 0$

Row 2 says $x_3 - x_4 + 2x_5 = 0$

Free vars: x_2, x_4, x_5

$$x_1 = -2x_2 - 2x_4 - x_5$$

$$x_3 = x_4 - 2x_5$$

Vectors in $\text{Null}(A)$:

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 2x_4 - x_5 \\ x_2 \\ x_4 - 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -1 \\ 0 \\ -2 \\ 0 \\ 1 \end{bmatrix}$$

These 3 vectors form
a basis of $\text{Null}(A)$