

Math 231, Thu 18-Feb-2021 -- Thu 18-Feb-2021
Differential Equations and Linear Algebra
Spring 2020

Thursday, February 18th 2021

Due:: WW LAConcepts1.03-1.08 due at 11 pm

Other calendar items

Thursday, February 18th 2021

Wk 3, Th

Topic:: Determinants

Topic:: Cramer's rule

Read:: ODELA 1.9-1.10

<https://pad.disroot.org/p/m231-17feb2021>

Exercise:

(a) Find a basis for the collection of vectors

$\langle s - 2t, 3s + 2w, s + t + w, t - 3w \rangle$

$s, t, w \in \mathbb{R}$

basis:

$$\begin{bmatrix} 1 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 1 \\ -3 \end{bmatrix}$$

\mathbb{R}^4

(b) We called what we found a basis, which presumes this collection is a subspace of something. What larger space does it reside in? How do we know it is a subspace?

(c) Can you write a matrix A whose column space corresponds to this collection of vectors?

(d) Can our basis be "enhanced" in order to create a basis for \mathbb{R}^4 ?

Q2:

Suppose b is a nonzero vector, and $Ax = b$ is consistent. Do the solutions of $Ax = b$ form a subspace of \mathbb{R}^n ?

Q3: (If there is time)

Visit the website <https://pad.disroot.org/p/m231-17feb2021> and write, as a class, things we can conclude in each setting.

$$\begin{bmatrix} - & - & - & | & b_1 \\ - & - & - & | & b_2 \\ - & - & - & | & b_3 \\ - & - & - & | & b_4 \end{bmatrix}$$

To consider

- linear independence of functions on an interval
- 1, $\sin^2 x$, $\cos^2 x$ are L.D.
- specification of interval is important!

Example: x and $|x|$ on $(0, \infty)$ vs. $(-\infty, \infty)$

Test:

Form n-by-n matrix, fns along top row, derivs. up to order $(n-1)$ down.
If at some $t \in I$, $A(t)$ has no free col., then fns are L.I. on I .

Determinants

- 2-by-2:
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
 indicates a singular matrix when zero (parallel lines)
- What a determinant can determine
- notation $|A|$, $\det(A)$
- extending to other square matrices using cofactor expansion recursive definition
same result whether you expand along one row/col or another
may lead you to choose row/col with most zeros
- Theorem: Determinant of a triangular A is product of its diagonal elements.
- Theorem: Determinants and EROs. If B arises from A due to
 - a row swap, then $|B| = -|A|$.
 - a row of B is r times a row of A , then $|B| = r|A|$.
 - a row of B is one row of A plus r times another row of A , then $|B| = |A|$.
- Theorem: For n-by-n matrix A , TFAE:
 - A is nonsingular
 - $\det(A) \neq 0$.
 - cols of A form a basis for \mathbb{R}^n
 - $\text{RREF}(A) = I$
 - Every b of \mathbb{R}^n is in $\text{col}(A)$
 - $\text{null}(A)$ is trivial
 - $\text{rank}(A) = n$
 - $\text{nullity}(A) = 0$
- Cramer's Rule

Cramer's Rule

Cramer's rule provides a method for solving a system of linear algebraic equations for which the associated matrix problem $\mathbf{Ax} = \mathbf{b}$ has a coefficient matrix which is *nonsingular*. It is of no use if this criterion is not met and, considering the effectiveness of algorithms we have learned already for solving such a system (inversion of the matrix \mathbf{A} , and Gaussian elimination, specifically), it is not clear why we need yet another method. Nevertheless, it is a tool (some) people use, and should be recognized/understood by you when you run across it. We will describe the method, but not explain why it works, as this would require a better understanding of determinants than our time affords.

So, let us assume the n -by- n matrix \mathbf{A} is nonsingular, that \mathbf{b} is a known vector in \mathbb{R}^n , and that we wish to solve the equation $\mathbf{Ax} = \mathbf{b}$ for an unknown (unique) vector $\mathbf{x} \in \mathbb{R}^n$. Cramer's rule requires the construction of matrices $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n$, where each \mathbf{A}_j , $1 \leq j \leq n$ is built from the original \mathbf{A} and \mathbf{b} . These are constructed as follows: the j^{th} column of \mathbf{A} is replaced by \mathbf{b} to form \mathbf{A}_j .

Example 1: Construction of $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3$ when \mathbf{A} is 3-by-3

Suppose $\mathbf{A} = (a_{ij})$ is a 3-by-3 matrix, and $\mathbf{b} = (b_i)$, then

$$\mathbf{A}_1 = \begin{pmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{pmatrix}, \quad \mathbf{A}_2 = \begin{pmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{pmatrix}, \quad \text{and} \quad \mathbf{A}_3 = \begin{pmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{pmatrix}.$$

■

Armed with these \mathbf{A}_j , $1 \leq j \leq n$, the solution vector $\mathbf{x} = (x_1, \dots, x_n)$ has its j^{th} component given by

$$x_j = \frac{|\mathbf{A}_j|}{|\mathbf{A}|}, \quad j = 1, 2, \dots, n. \quad (1)$$

It should be clear from this formula why it is necessary that \mathbf{A} be nonsingular.

Example 2:

Use Cramer's rule to solve the system of equations

$$\begin{aligned} x + 3y + z - w &= -9 \\ 2x + y - 3z + 2w &= 51 \\ x + 4y + 2w &= 31 \\ -x + y + z - 3w &= -43 \end{aligned}$$

Here, \mathbf{A} and \mathbf{b} are given by

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 1 & -1 \\ 2 & 1 & -3 & 2 \\ 1 & 4 & 0 & 2 \\ -1 & 1 & 1 & -3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -9 \\ 51 \\ 31 \\ -43 \end{pmatrix}, \quad \text{so} \quad |\mathbf{A}| = \begin{vmatrix} 1 & 3 & 1 & -1 \\ 2 & 1 & -3 & 2 \\ 1 & 4 & 0 & 2 \\ -1 & 1 & 1 & -3 \end{vmatrix} = -46.$$

Thus,

$$x = \frac{|\mathbf{A}_1|}{|\mathbf{A}|} = \frac{1}{|\mathbf{A}|} \begin{vmatrix} -9 & 3 & 1 & -1 \\ 51 & 1 & -3 & 2 \\ 31 & 4 & 0 & 2 \\ -43 & 1 & 1 & -3 \end{vmatrix} = \frac{-230}{-46} = 5,$$

$$y = \frac{|\mathbf{A}_2|}{|\mathbf{A}|} = \frac{1}{|\mathbf{A}|} \begin{vmatrix} 1 & -9 & 1 & -1 \\ 2 & 51 & -3 & 2 \\ 1 & 31 & 0 & 2 \\ -1 & -43 & 1 & -3 \end{vmatrix} = \frac{-46}{-46} = 1,$$

$$z = \frac{|\mathbf{A}_3|}{|\mathbf{A}|} = \frac{1}{|\mathbf{A}|} \begin{vmatrix} 1 & 3 & -9 & -1 \\ 2 & 1 & 51 & 2 \\ 1 & 4 & 31 & 2 \\ -1 & 1 & -43 & -3 \end{vmatrix} = \frac{276}{-46} = -6,$$

$$w = \frac{|\mathbf{A}_4|}{|\mathbf{A}|} = \frac{1}{|\mathbf{A}|} \begin{vmatrix} 1 & 3 & 1 & -9 \\ 2 & 1 & -3 & 51 \\ 1 & 4 & 0 & 31 \\ -1 & 1 & 1 & -43 \end{vmatrix} = \frac{-506}{-46} = 11,$$

yielding the solution $\mathbf{x} = (x, y, z, w) = (5, 1, -6, 11)$.

■

Determinants

- Know how for a 2-by-2 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$: $\det = ad - bc$

- Notation

$$\det(A), |A|$$

- Use: determines whether a matrix singular or not
 - 0 determinant \leftrightarrow singular = no inverse
 - nonzero determinant \leftrightarrow nonsingular = invertible
- $\det(A)$ makes sense only for square matrices

Example:

4x4 matrix A \det .

$$\begin{bmatrix} 2 & 1 & 0 & 3 \\ 1 & -1 & 4 & 0 \\ 2 & 1 & 0 & -1 \\ 1 & 1 & 1 & 0 \end{bmatrix} = (1)(-1) \begin{vmatrix} 1 & 0 & 3 \\ -1 & 4 & 0 \\ 1 & 0 & -1 \end{vmatrix} + (1)(-1) \begin{vmatrix} 2 & 0 & 3 \\ 1 & 4 & 0 \\ 2 & 0 & -1 \end{vmatrix} + (1)(-1) \begin{vmatrix} 2 & 1 & 3 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{vmatrix} + (0)(-1) \begin{vmatrix} 2 & 1 & 0 \\ 1 & -1 & 4 \\ 2 & 1 & 0 \end{vmatrix}$$

Pos. $4,1$ $C_{4,1}$
 Pos. $4,2$ $C_{4,2}$
 Pos. $4,3$ $C_{4,3}$
 Pos. $4,4$ $C_{4,4}$

$C_{i,j}$ called (i,j) -cofactor of matrix (A) .

We have, above, "expanded our $\det(A)$ in cofactors along 4^{th} row"

that is,

$$\det(A) = a_{41} C_{41} + a_{42} C_{42} + a_{43} C_{43} + a_{44} C_{44}$$

Surprising (?)

Expansion of $\det(A)$ in cofactors along

- any row or
- any column

always gives the same final number/result.

Given this, expanding along col. 3

$$\det(A) = a_{13} C_{13} + a_{23} C_{23} + a_{33} C_{33} + a_{34} C_{34}$$

$$= 0(-1) \begin{vmatrix} 1 & -1 & 0 \\ 2 & 1 & -1 \\ 1 & 1 & 0 \end{vmatrix} + 4(-1) \begin{vmatrix} 2 & 1 & 3 \\ 2 & 1 & -1 \\ 1 & 1 & 0 \end{vmatrix} + (1)(-1) \begin{vmatrix} 2 & 1 & 3 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 1 & 3 \\ 2 & 1 & -1 \\ 1 & 1 & 0 \end{vmatrix} = 1(-1) \begin{vmatrix} 3+1 \\ 1 & 3 \\ 1 & -1 \end{vmatrix} + (1)(-1) \begin{vmatrix} 3+2 \\ 2 & 3 \\ 2 & -1 \end{vmatrix}$$

$$= (1)(1)(-4) + (1)(-1)(-8) = \underline{\underline{4}}$$

$$\left| \begin{array}{ccc} 2 & 1 & \underline{3} \\ 1 & -1 & \underline{0} \\ 2 & 1 & \underline{-1} \end{array} \right| = (3)(-1)^{1+3} \left| \begin{array}{cc} 1 & -1 \\ \underline{2} & \underline{1} \end{array} \right| + 0 + (-1)(-1)^{3+3} \left| \begin{array}{cc} 2 & 1 \\ 1 & -1 \end{array} \right|$$

$$= (3)(1)(3) - (-3) = 12$$

Original

$$\det_{4 \times 4}(A) = (-4)(4) - 12 = -28$$

$$A = \begin{bmatrix} -5 & 3 \\ -6 & 2 \end{bmatrix}$$

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} -5 & 3 & 1 & 0 \\ -6 & 2 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & -1 \\ -6 & 2 & 0 & 1 \end{bmatrix}$$

$$r_2 + 6r_1 \rightarrow r_2 \sim \begin{bmatrix} 1 & 1 & 1 & -1 \\ 0 & 8 & 6 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & -1 \\ 0 & 1 & 3/4 & -5/8 \end{bmatrix}$$

$$r_1 - r_2 \rightarrow r_1 \sim \begin{bmatrix} 1 & 0 & 1/4 & -3/8 \\ 0 & 1 & 3/4 & -5/8 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 4 \\ -2 & 5 \end{bmatrix}$$

① Which $\vec{b} \in \mathbb{R}^3$ make the vector eqn. $A\vec{x} = \vec{b}$ consistent

② Which \vec{b} can be written as linear combination of $\begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}$

— that is, so $\vec{b} = x_1 \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}$

③ Describe the $\text{Col}(A)$.

All are asking the same thing, using different language.

$$A = \begin{bmatrix} 4 & 2 & 1 & -2 & -1 \\ 2 & 1 & 3 & -2 & 3 \\ -1 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$\text{Col}(\mathbf{A})$ is spanned by $\begin{bmatrix} 4 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix}$