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Determinants

Discuss, for systems of 2 linear (algebraic) equations in 2 unknowns, such as

ax ` by “ e,
cx ` dy “ f ,

(1)

• the di↵erent solution cases: a unique point of intersection, coincident lines, parallel lines.

• distinguishing the unique solution case from the other two cases based on the ratios a : c and
b : d or, better yet, the value of ad ´ bc.

• the form of the associated matrix problem
«

a b
c d

� «
x
y

�

“
«

e
f

�

,

and how the quantity pad ´ bcq above is a feature of the coe�cient matrix. For

A “
«

a b
c d

�

, define detpAq “ |A| “
������
a b
c d

������ :“ ad ´ bc,

called the determinant of A.

Note that,

˝ every time A is nonsingular, the matrix problem Ax “ b has a unique solution, and

˝ every time detpAq , 0, the matrix problem Ax “ b has a unique solution.
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so the next result should not be so terribly surprising.

Theorem 1: The 2-by-2 matrix

A “
«

a b
c d

�

is nonsingular if and only if detpAq , 0.

Q: Is there a way to define detpAq for n-by-n (square) matrices with n ° 2 so that this theorem
holds when “2-by-2” is replaced by “n-by-n”?
A: Yes.

Note: There is no need to define detpAq when A is non-square.

For an n-by-n matrix A, define

• pi, jq-minor of A to be the determinant of the submatrix of A which is missing the ith row
and jth column of A.

Note: there are n2 such minors, denoted Mij, for 1 § i, j § n.

• pi, jq-cofactor of A, denoted Cij, and given by

Cij :“ p´1qi` jMij.

• determinant of A, given by cofactor expansion along the ith row

detpAq :“ ai1Ci1 ` ai2Ci2 ` ¨ ¨ ¨ ` ainCin “
nÿ

k“1

aikCik,

or by cofactor expansion along the jth column

detpAq :“ a1 jC1 j ` a2 jC2 j ` ¨ ¨ ¨ ` anjCnj “
nÿ

k“1

akjCkj.

It may seem we have just given p2nq di↵erent formulas for detpAq, but each one of them
yields the exact same answer. With such freedom, one generally chooses to expand along
the row or colunn that contains the most zero entries.

Point out the recursive nature of this definition.
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Additional facts about determinants
1 Two nan matrices A B

AB LAI IBI
2 Under EROS

row swap causes a change only in signof det
reseeding a row by factor e causes the Jet
to be resealedby c

A fI has detfA 11

So

Y E has det 5.11 55

adding a multipleof one row to another affects

no change to the determinant

an3 If A is upper triangular au
zeros n
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maindiagonalAl a au oh fromtopleft
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Cramer’s rule

- give context

- do an example (2-by-2?)

3

One use for determinants

Purpose of CR is solve the rectorproblem AI
in the case where

A is square
and I A E

A is nonsingular

Ed 2x t y 7 in meat vectorform

sa
f HII'tas

A e b

Cramer's rule gives
formulas for components X y of E Cx 7
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F is e rec of Au when Ito and AE If
for some sealer X

AE to AE to 8

At IIe T
A XI T T

fr is a nonzero rector in null A XI

Note null ATI is a subspace of R with dimension nullityIA JI

Finding erods at e recs

1 Must find choices ofscalar 1 for which

nnaitgia.xt.no deHa E I
I
Bothrepresent the

fact

that A XI
is singular

2 Foreachsofa A coming from 1 we find nullCA XI
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Cramer’s Rule

Cramer’s rule provides a method for solving a system of linear algebraic equations for which the
associated matrix problem Ax “ b has a coe�cient matrix which is nonsingular. It is of no use if
this criterion is not met and, considering the e↵ectiveness of algorithms we have learned already
for solving such a system (inversion of the matrix A, and Gaussian elimination, specifically), it
is not clear why we need yet another method. Nevertheless, it is a tool (some) people use, and
should be recognized/understood by you when you run across it. We will describe the method,
but not explain why it works, as this would require a better understanding of determinants than
our time a↵ords.

So, let us assume the n-by-n matrix A is nonsingular, that b is a known vector in Rn, and that we
wish to solve the equation Ax “ b for an unknown (unique) vector x P Rn. Cramer’s rule requires
the construction of matrices A1, A2, . . . , An, where each A j, 1 § j § n is built from the original A
and b. These are constructed as follows: the jth column of A is replaced by b to form A j.

Example 1: Construction of A1, A2, A3 when A is 3-by-3

Suppose A “ paijq is a 3-by-3 matrix, and b “ pbiq, then

A1 “

¨

˚̋
b1 a12 a13

b2 a22 a23

b3 a32 a33

˛

‹‚, A2 “

¨

˚̋
a11 b1 a13

a21 b2 a23

a31 b3 a33

˛

‹‚, and A3 “

¨

˚̋
a11 a12 b1

a21 a22 b2

a31 a32 b3

˛

‹‚.

Armed with these A j, 1 § j § n, the solution vector x “ px1, . . . , xnq has its jth component given
by

xj “
|A j|
|A| , j “ 1, 2, . . . ,n. (2)

It should be clear from this formula why it is necessary that A be nonsingular.

Example 2:

Use Cramer’s rule to solve the system of equations

x ` 3y ` z ´ w “ ´9

2x ` y ´ 3z ` 2w “ 51

x ` 4y ` 2w “ 31

´x ` y ` z ´ 3w “ ´43

4
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Here, A and b are given by

A “

¨

˚̊
˚̊
˝

1 3 1 ´1
2 1 ´3 2
1 4 0 2

´1 1 1 ´3

˛

‹‹‹‹‚
, b “

¨

˚̊
˚̊
˝

´9
51
31

´43

˛

‹‹‹‹‚
, so |A| “

�������������

1 3 1 ´1
2 1 ´3 2
1 4 0 2

´1 1 1 ´3

�������������

“ ´46.

Thus,

x “ |A1|
|A| “ 1

|A|

�������������

´9 3 1 ´1
51 1 ´3 2
31 4 0 2

´43 1 1 ´3

�������������

“ ´230
´46

“ 5,

y “ |A2|
|A| “ 1

|A|

�������������

1 ´9 1 ´1
2 51 ´3 2
1 31 0 2

´1 ´43 1 ´3

�������������

“ ´46
´46

“ 1,

z “ |A3|
|A| “ 1

|A|

�������������

1 3 ´9 ´1
2 1 51 2
1 4 31 2

´1 1 ´43 ´3

�������������

“ 276
´46

“ ´6,

w “ |A4|
|A| “ 1

|A|

�������������

1 3 1 ´9
2 1 ´3 51
1 4 0 31

´1 1 1 ´43

�������������

“ ´506
´46

“ 11,

yielding the solution x “ px, y, z,wq “ p5, 1,´6, 11q.

5
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A squaredinduces a function from IR into Rn
f e AI yielding output another rector in IR
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Eigenvalues and eigenvectors

- mapping x -> Ax has input and output in Rˆn when A is square

- look at animation linked from class website

try? changing A to [-14 -42; 4 12] (singular matrix?)

- Q: When are Ax and x parallel?

One obvious, but uninteresting answer, is when x=0.

Revised Q: For which nonzero vectors x are Ax and x parallel?

Write as Ax = lambda x <==> (A - lambda I) x = 0

<==> (A - lambda I) has a nontrivial null space

<==> |A - lambda I| = 0

- Examples of finding them

find eigenvalue first

roots of characteristic polynomial |A - lambda I|

degree of characterisic polynomial matches number of rows/cols of A

quadratic formula vs. factoring

eigenspaces

one for each eigenvalue

another word for a null space, so is a subspace of Rˆn

dim(eigenspace) = nullity(A - lambda I)

know all the corresp. eigenvectors once you have a basis for it

Eigenvalues and Eigenvectors

Converting nth order DEs and systems of DEs into 1st order systems

• Reminder of how this is done

for each dependent variable u whose highest appearing derivative is kth order,
introduce pk ´ 1q new dependent variables to rename u1, u2, . . . , upk´1q

• When the original DE (or system of DEs) is

˝ linear, converted system will be (in the form of) x1 “ Aptqx ` bptq.

˝ linear with constant coe�cients, converted system will be x1 “ Ax ` bptq.

˝ homogeneous linear with constant coe�cients, converted system will be x1 “ Ax.

Example 3:

6

SquareA T is an eigenvector if AT YE and T F 8
cotrresponding eigenvalue

too


