
Wednesday, March 3rd 2021

Wk 5, We
Topic:: DE classifications
Topic:: Direction fields

Classifications to note:

- Order
- Autonomous vs. nonautonomous
- linear
 - homogeneous vs. nonhomogeneous
 - where we'll spend most of our time
- ordinary vs. partial
 - comes down to the count of independent vars
- single DE vs. system
 - comes down to the count of dependent vars

Direction fields

- possible for 1st-order (single) ODEs which are put into normal form
- usage?

Separable DEs

- resides in the intersection of
 - ordinary DEs
 - 1st-order
 - single DE (not a system)
- key feature: can be put in form: $M(y) dy/dx = N(x)$
 - recognizing if a form is possible is key in DEs!
 - Note: The DE $y' = \cos(t) - 2y$ is NOT separable
- solving
 - Can proceed to integrate: $\int M(y) dy = \int N(x) dx$
 - Not always easy to tease out explicit formula for $y(x)$

Not yet
discussed

basis soln.

deriv $3e^{kt} \cdot k$

eng. $3e^{kt}$

Propose soln:

$y(t) = C e^{kt}$
scalar

Population Models

A simple model:

$$y' = \frac{dy}{dt}$$

$y' = ky.$

(1)

k constant

Describe in words like "rate of change of unknown is proportional to the size of the unknown."

Instead of calling this a population, try to elicit from students scenarios like the following that fit our model description:

- population
- investments
- radioactive decay

At some point let on that the general solution is Ce^{kt} , indicating the flaw in such a model for populations.

Pose the alternative model

$$y' = ry(1 - y) = \underline{ry} - \underline{ry^2}. \quad (2)$$

Note that

- When $y \approx 0$, the nonlinear term ry^2 is negligible in comparison to the linear term ry , so the model should behave like the previous one. Effect of the nonlinear term is felt increasingly as the size of y grows.
- There are **equilibrium solutions** $y \equiv 0$ and $y \equiv 1$.

Direction Fields

To investigate this model further, introduce direction fields.

- Direction fields possible for 1st order DEs which can be arranged in **normal form**

$$y' = f(t, y) \quad (3)$$

- At each point (t, y) sketch a hash mark with slope $f(t, y)$. Practice drawing for the logistic equation above.

Will expect students to sketch by hand for autonomous DEs.

- Use direction field applet at <http://math.rice.edu/%7edfield/dfpp.html>

links from
class webpage

Model:

$$\textcircled{2} \quad \underline{m \underline{v'}} = \underline{mg} - \underline{\gamma v} \quad \text{falling body}$$

gravitational force

m = mass

v = velocity

$g = 9.8 \text{ m/s}^2$

γ = drag constant

\textcircled{3} Newton's Law of Cooling

T = body's temperature

T_0 = ambient temperature (const)

k = constant of proportion

$$\frac{dT}{dt} = -k(T - T_0)$$

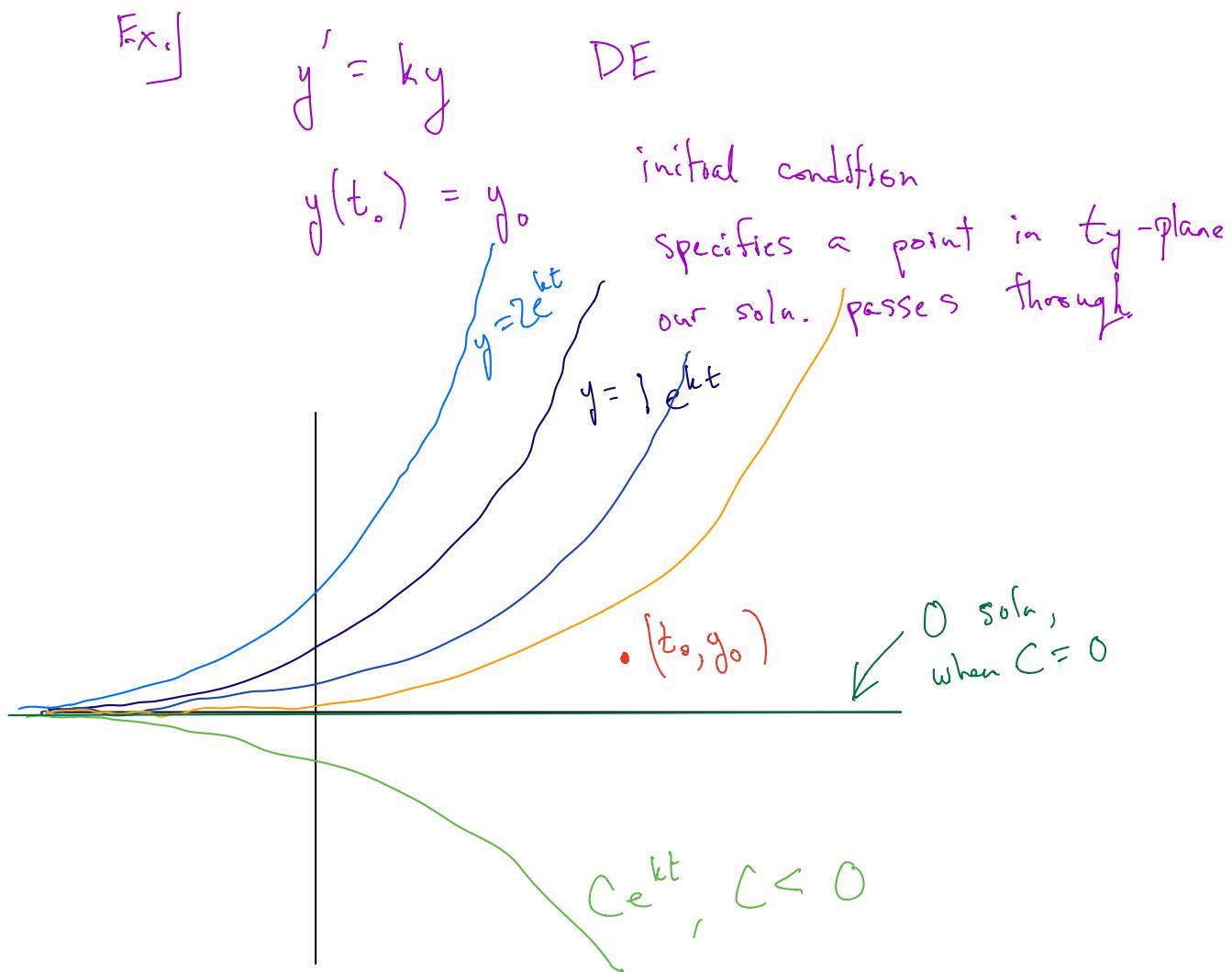
1st-order ODEs

- Look like $F(y, y', t) = 0$
- Solutions are families of fun., not unique (single) answers

Ex) e^{kt} is not only soln. of $y' = ky$

There are others — namely all scalar mults.

To obtain a unique soln., one can solve an IVP
(initial value problem)



- Some 1st-order DEs allow for arranging in the form

$$y' = f(t, y) \quad \text{Normal form}$$

y' solved for

terms on other side don't have y'

