
Normal form
1st order DE for systemofDE
1stderiv foreach dep var is solved for

y flt y
An idea Antidiff both sides

f yftidt f flt yHdt
I generally cannotdo

ylt w out knowing glt

Special instance where this works separable DES

Tan bewritten as Mly dat Nlt

fit g NUIExj
y 2kg2 xnot t as int Mly

dad 2
2 have separation

ftp.yyxldx f2x2dx

t

1
By

substitution

fy2dy f2x2dx

y t C Iz x't f

j 23
3
t C

f 23
3

glx 3
Answer familyof

answers

one forinch C

Different idea

y 25g w IC yl I
yk y

Know
y

this ykthl y

If we take fixed small h then

y x x ylxthl yh
or after algebra

ylxth ylx thy'lx y

Idea Euler's Method

t.is
y I

ylxotax yko t DXgtx r i r i l
Xo X Xz4344 X

fromnormal
form

makegridpoints
evenlyspaced

jcxoy
flxo.jo

by h DX

Y Yo t DXflxoy x is f Dx are

all known atoutset

init rise
ht

Now repeat Have x y Bx f

ylx.lk y
ye y t Dx ft y

MATH 231 Lecture Notes Solving a Nonseparable 1st order IVP Via Integration?

Numerical Solutions

Very often we would be happy with an approximate solution, say, one that aims not to tell us the
value of yptq at all times, but rather at just some final time tfinal. It follows from Equation (5) that

yptfinalq “ y0 `
ª tfinal

t0

f ps, ypsqq ds, (7)

an expression that, as we have already observed, contains an integral we cannot calculate exactly.
However, a number of methods have been proposed for calculating this integral approximately.

Euler’s Method

The first idea we pose for approximating the
integral in Equation (7) (corresponding to the
full area under the curve f ps, ypsqq depicted
at right) is just the left-hand Riemann sum
method from Calculus. An extremely crude
(and poor) approximation arises using just
one rectangle: knowing the value of f ps, ypsqq
at the left-most point s “ t0, we act as if
f ps, ypsqq remains equal to f pt0, y0q through-
out the interval rt0, tfinals. (See the figure.) Us-
ing this crude approximation we would get

yptfinalq ⌘ y0 ` ptfinal ´ t0q f pt0, y0q.
Section 2.7 of the text explains this approach in more detail and, in the process, describes an
alternate way, via the idea of following a tangent line to the curve yptq instead of the curve itself,
of understanding what is being done here.

While a poor approximation for yptfinalq is enough of a reason on its own to justify using more
rectangles, there is also the fact that, while we didn’t expect to get a full description of yptq (i.e.,
one we may evaluate at any time t between t0 and tfinal) using an approach like this, we would like
to wind up with something more than just two values of y, one at t0 (correct, but it was handed to
us already before we did any work!), and one at tfinal (which is only coarsely approximated). So,
let us partition up the time interval rt0, tfinals into N subintervals of length h “ ptfinal ´ t0q{N, so that

t0 † t1 † t2 † ¨ ¨ ¨ † tN “ tfinal, with each tj`1 ´ tj “ h.

5

MATH 231 Lecture Notes Solving a Nonseparable 1st order IVP Via Integration?

We then

set y1 “ y0 ` h f pt0, y0q « y0 `
ª t1

t0

f ps, ypsqq ds “ ypt1q,

set y2 “ y1 ` h f pt1, y1q,
...

set yN “ yN´1 ` h f ptN´1, yN´1q.

This is called Euler’s Method, and it is simply choosing a stepsize h ° 0 and calculating repeatedly

yj`1 “ yj ` h f ptj, yjq, j “ 0, 1, 2, . . . ,

until we have reached a satisfactory final time tfinal. By choosing h small, we obtain points
pt0, y0q, pt1, y1q, . . . , ptfinal, yfinalq as (horizontally) close to each other as we please, all of which
approximately lie on the desired solution curve yptq. See the applet at http://ocw.mit.edu/
ans7870/18/18.03/s06/tools/EulerMethod.html.

The Runge-Kutta Method

Euler’s Method is easily understood, but for it to yield good precision generally requires the
step size h to be extremely small, thus making it slow. (In actual fact, the realities of storing
numbers in a machine bring on ill e↵ects of a di↵erent sort when h is too small!) One can do
significantly better (without a great deal extra work) approximating the area under a curve via
piecewise quadratic functions (Simpson’s Rule) rather than via piecewise constant functions (left-
hand method). This fact, coupled with some technical details from Numerical Analysis, yields a
method for approximation of integrals like

ª tj`1

tj

f ps, ypsqq ds

known as the 4
th

order Runge-Kutta method which is far better than Euler’s method at solving
the same 1st order problems. The formulas are a good deal more complicated as well, and we
do not provide them here. There are a number of applets that carry out RK4; one is found at
http://www.csun.edu/˜hcmth018/RK.html. The next example gives an implementation in Sage.

Example 3:

Use the 4th order RK method to find an approximate value of the solution of

y1 “ 3e´4t ´ 2y, yp0q “ 1,

at t “ 4 using 40 steps (i.e., 40 subintervals, so h “ 0.1), and plot the result. Note that the true
solution is

yptq “ 1
2

`
5e´2t ´ 3e´4t˘ .

6

MATH 231 Lecture Notes Solving a Nonseparable 1st order IVP Via Integration?

In Sage, we first define the function

def rk(f, y0, t0, tFin, numSteps):

var(’t y’)

h = (tFin - t0)/numSteps

w = []

t = t0

y = n(y0)

w.append((t, y))

for i in range(1, numSteps+1):

K1 = f(t, y)

K2 = f(t + h/2, y + h*K1/2)

K3 = f(t + h/2, y + h*K2/2)

K4 = f(t + h, y + h*K3)

y = n(y + (K1 + 2*K2 + 2*K3 + K4) * h/6)

t = t0 + i*h

w.append((n(t), n(y)))

return w

This is the generic Runge-Kutta algorithm. To apply it to the specifics of our problem, we need
only

var(’t y’)

f(t,y) = 3*exp(-4*t) - 2*y

p1 = list_plot(rk(f, 1, 0, 4, 40), plotjoined=True,color=’blue’)

p2 = plot((5*exp(-2*t) - 3*exp(-4*t))/2, (t,0,4))

show(p1 + p2)

The red curve is the true solution, while the blue dots come from the RK4 method. These latter
seem to stick quite closely to the true solution.

7

