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Differential Equations and Linear Algebra

Spring 2020

-------------------------------

Wednesday, March 10th 2021

-------------------------------

Topic:: 1st order linear ODEs wrapup

Topic:: Existence and uniqueness

A "chemical-in-tank" (salt) model from last class notes:

There is a pool at Heculane (in Romania) used for rheumatic treatment.

When half-filled, it contains 50,000 gallons of natural hot springwater

with salt mixed in. Suppose this half-full tank currently has 5000 lbs

of Herculane salt. Fresh water is being allowed into the pool at the

rate of 2000 gal/hr. Let us assume it mixes instantly with the hot

springwater (so that the concentration of salt is spatially uniform).

If, at the same time, briny water is allowed to leave the tank at a

rate of 1000 gal/hr, what is the salt concentration at the instant the

tank becomes completely filled?

Let x(t) be amount of salt in tank at time t. Then

x’ = (rate of influx of salt) - (rate of outflux of salt)

=

Note: Those notes state another problem about about caloric intake,

energy use, and weight gain. This is really another tank problem.

Let x(t) = man’s mass in kg at time t

10000 x’ = 2500 - 1200 - 16x = 1300 - 16x

Nonlinear DEs?
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Existence and Uniqueness

Uniqueness of solutions for ODEs is not plausable.

But, if we turn our problem into an IVP

y1 “ f pt, yq, subject to IC ypt0q “ y0. (1)

we might have more satisfactory answers to these questions:

1. Does problem (1) have a solution? (Existence)

2. Does problem (1) have at most one solution? (Uniqueness)

3. On what interval does our solution solve the problem?

To partially address these questions, we have the following theorems.

Theorem 1 (Existence): Suppose f pt, yq is continuous in an open rectangle R : a † t †
b, c † y † d of the ty-plane. Given any point pt0, y0q of R, there exists a solution of problem
(1) on some open interval I containing t0.

Theorem 2 (Uniqueness): If, in addition to the assumptions of Theorem 1, the partial
derivative B f {By is continuous throughout R, then the solution of (1) is unique.

While these two theorems answer the most important fundamental questions—those of existence
and uniqueness of a solution—they are silent on the interval of existence for that solution.
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There is, however, a stronger theorem that applies to the linear problem

y1 “ aptqy ` f ptq, ypt0q “ y0, (2)

and addresses all three questions.

Theorem 3: If the functions a, f are continuous on an open interval I containing the number
t0, then there exists a unique function ỹ that satisfies both parts (the DE and the IC for
arbitrary y0) of (2). Moreover, the interval of existence (i.e., the t values for which the DE is
satisfied by ỹ) includes all of I.

Q: Is integration a technique that works in general to solve (1) whenever a solution exists?

Q: Consider the given di↵erential equation, along with initial condition ypx0q “ y0. Identify the
set of points px0, y0q, or indicate that none exist, for which the Fundamental Existence/Uniqueness
Theorem for 1st order IVPs does not guarantee a unique solution passes through them.

(a) y1 “ ex ` y
x2 ` y2

(b) y1 “ 2xy ` ?
x

(c) y1 “ 2x ` 3y
x ´ 4y

(d) y1 “ cos y
x ´ 1
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