
Math 231, Fri 12-Mar-2021 -- Fri 12-Mar-2021

Differential Equations and Linear Algebra

Spring 2020

Friday, March 12th 2021

Wk 6, Fr

Topic:: Existence and uniqueness wrapup

Read:: ODELA 2.2.1

HW:: WW Ch02Part2 due Mon 11 pm

Existence and uniqueness wrap-up

- IVP to solve: y’ = yˆ2, y(0)=1

- Solve it outright, note the blowup

- Use Euler’s method to solve it with h=0.3: steps right past the blowup

- Disturbing?

Revisit existence and uniqueness for y’ = g(t,y) = a(t)y + f(t)

- Doesn’t apply to problem above

- Gives assurance of no blowup in an interval

A t ant of radioactive material at time t

Alt
Aco

At t 5730 yrs Al573

A o C
5730k

A 5730 Ce
5730k

z

I
FH y y y o I

dig y
afterseparating fy2dy Idt

y t t C

maltby L l

g C t
reciprocating

Y c
one degree of

freedom

family of solus toDE

IC yco 1

I c I

IVP has sin
yft y

blows up
at t 1

If I applied Euler's method to this problem

Given to y 0 1

Choose h

Iterate you yn th f Itn y

fit g yHere I'll take h 0.3

n th y d got hfftogo
O O I I t 10.37112

I 0.3 1.3 ya y th f It y
2 06 1.807 1.3 t o 3 l 33 0.9 2.7866
4 1.2 5.116 y 1.807 10.3 1.80772

5 1.5 12.698
y 2.7866 10371278665

r 5.116

Existence Uniqueness

If our problem is linear then

y glty yltol go

altly t flt

so glt.gl altly tht

I att
ay

and our criteria about sites where g g are

continuous become criteria about where att fct
are continuous

Than 3 from 2 class periods ago takes this into
account

Applied to the problem

F I
y Haat y tf y I

act tant discant att
3
Is If

f t I discont at t I t o
I t t ionbetween

att

E
t

r i tfat 3 I I Iz Iz
location of IC

MATH 231 Lecture Notes 1st Order Systems of ODEs

1st Order Systems of ODEs

We next consider the interaction between multiple dependent variables relying on the same inde-
pendent variable, otherwise known as a system of ODEs. Generally, a system of equations has
the same number of equations as unknowns, and this is true for the systems of ODEs we study as
well. We start by looking at 1st order systems, ones in which each of the individual DEs is 1st order.
Note that, while we will not state the theorems here, there are Existence and Uniqueness theorems
for 1st order systems of DEs (both generally, and specifically to linear systems) which sound very
much like the corresponding theorems for 1st order (scalar) DEs.

Example 1: Decoupled ODEs

The simplest type of system of 1st order ODEs in n dependent variables is

y1
1 “ f1pt, y1q,

y1
2 “ f2pt, y2q,
...

y1
n “ fnpt, ynq.

where no dependent variable yi appears in any DE with a di↵erent dependent variable yj. A
specific instance with n “ 2 might be

x1 “ ?
x,

y1 “ t ´ y.

Notice that the equation in x has no reference to y, while the equation in y has no reference to
x. Such systems are said to be decoupled, which implies you may attack them separately and
in either order, as if they were two completely separate problems.

To make an IVP out of this system, we would need ICs for both x and y—i.e., values xpt0q,
ypt0q specified (usually) at a common time t0.

x1 “ ?
x, xp1q “ 1,

y1 “ t ´ y, yp1q “ 2.

Solutions are
xptq “ 1

4
pt ` 1q2, and yptq “ t ´ 1 ` 2e1´t,

and are usually plotted as the single vector function

rptq “ pxptq, yptqq “
ˆ

1
4

pt ` 1q2, t ´ 1 ` 2e1´t
˙
,

in the xy-plane, known as the phase plane. Sage commands which achieve such a plot appear
below.

2

if Cy y Yi dep oars

t g
are components

MATH 231 Lecture Notes 1st Order Systems of ODEs

var(’t’)

x(t) = (t+1)ˆ2/4

y(t) = t - 1 + 2*exp(1-t)

parametric_plot((x(t), y(t)), (t, 1, 5))

Example 2: Only slightly more complicated than a decoupled system

Consider the 1st order system

x1 “ 2x, xp0q “ 5,

y1 “ xy, yp0q “ 1.

The system is nonlinear, and not truly decoupled. However, if we start by solving the first
equation (the one in x, where y is absent) for xptq, this system is no more di�cult to solve than
the decoupled system above.

In particular, having solved the first DE to get xptq “ 5e2t, the second DE becomes linear, as
we have

y1 “ xy “ 5ye2t, subject to yp0q “ 1,

which has solution yptq “ exp
` 5

2 e2t ´ 5
2

˘
.

Example 3: Fully coupled, linear system

The system of DEs

x1 “ 2x ` t2y, xp0q “ 1,

y1 “ x, yp0q “ ´1.

is fully coupled (i.e., the expression for dx{dt relies on values of y and that for dy{dt relies on x),
and is linear. [Note that the power to which the dependent variables x, y and their derivatives
are raised is 1, the lack of interactions (terms like xx1, xy, x1y, and the like), etc.]

3

MATH 231 Lecture Notes 1st Order Systems of ODEs

Example 4: A↵ection between Romeo and Juliet (Strogatz, p. 138)

This is a disfunctional version of the story. Juliet grows cold toward Romeo when his feelings
burn hot, but she becomes attracted to him if he doesn’t seem to want her. Romeo, on the
other hand, has feelings that lag behind Juliet’s—If she shows interest, he starts warming up
to her; but his interest wains when he notices it isn’t reciprocated.

Let

Rptq “ Romeo’s feelings for Juliet at time t.
Jptq “ Juliet’s feelings for Romeo at time t.

When R, J are positive, this signifies feelings of love. When negative, this reflects hate. A
simple model:

dR{dt “ aJ
dJ{dt “ ´bR

+

with a, b positive constants.

Example 5: Sharks caught in the Mediterranean Sea during WWI1

A tally of the types of fish brought by fishermen to the port of Fiume, Italy during the years
1914–1923 shows what percentage of the year’s catch was classified as selachians (sharks,
skates, rays, and other predators) which are undesirable for food:

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
11.9% 21.4% 22.1% 21.2% 36.4% 27.3% 16.0% 15.9% 14.8% 10.7%

Biologist Umberto D’Ancona was struck by the rise of this percentage during the years of
WWI (1914-1919). D’Ancona’s friend Vito Volterra proposed the following nonlinear model
for the sizes xptq of prey and yptq of predator populations:

dx
dt

“ ax ´ bxy,

dy
dt

“ ´cy ` dxy,
(1)

where a, b, c, d are positive contants. It is possible to find the solution curves (in the phase
plane—that is, to find rptq “ pxptq, yptqq) analytically, but we will not investigate how. Instead,
we use the 4th order Runge-Kutta method to get a numerical solution.

1Di↵erential Equation Models, Vol. 1, Braun, Martin, Courtney S. Coleman, Donald A. Drew, Eds., Springer-Verlag,
1978, p. 221 ↵.

4

9 b cd O constants

MATH 231 Lecture Notes 1st Order Systems of ODEs

5

g x y g Tx y
depvars

j fi it glt.gl

1storder system of DEs in normal form

MATH 231 Lecture Notes 1st Order Systems of ODEs

Numerical Solutions

My algorithm, implemented in Sage, for the RK4 method on 1st order systems is

vrkstep is not the full program, just a subroutine of it.

See the main program vrk below.

def vrkstep(f, curr_y, t, h):

y = vector(RR, curr_y)

K1 = vector(RR, f(t, *y))

nexty = y + h*K1/2

K2 = vector(RR, f(t + h/2, *nexty))

nexty = y + h*K2/2

K3 = vector(RR, f(t + h/2, *nexty))

nexty = y + h*K3

K4 = vector(RR, f(t + h, *nexty))

return (y + (K1 + 2*K2 + 2*K3 + K4) * h/6)

This cell is the "program". It must be evaluated, but will not actually

do anything until the specifics of the problem are entered and the program

is "called" (see the next cell).

def vrk(f, y0, t0, tFin, numSteps, keepCoords):

h = (tFin - t0)/numSteps

w = []

t = t0

y = vector(RR, y0)

if (keepCoords.count(0) > 0):

keepCoords.pop(keepCoords.index(0))

keep_t = True

nEntry = [n(t)]

nEntry.extend([n(y0[j-1]) for j in keepCoords])

w.append(tuple(nEntry))

else:

keep_t = False

w.append(tuple([y0[j-1] for j in keepCoords]))

keepIdxs = [j-1 for j in keepCoords]

for i in range(1, numSteps+1):

y = vrkstep(f, y, t, h)

t = t0 + i*h

if keep_t:

nEntry = [n(t)]

nEntry.extend([n(y[j]) for j in keepIdxs])

w.append(tuple(nEntry))

else:

w.append(tuple([n(y[j]) for j in keepIdxs]))

return w

6

MATH 231 Lecture Notes Higher order systems

Example 6: Numerical solution of Volterra Predator–Prey Eqns

Suppose a “ 1, b “ 0.5, c “ ´0.75 and d “ 0.25 in the predator–prey equations (1). Use
4th order RK to find the solution passing through the IC xp0q “ 1, yp0q “ 2.

Note that, while the lines of code for the algorithm above must be implemented, they do little
until more code is introduced to initiate the specifics of the problem at hand and to call the
vrk routine. In the case of our problem, we run commands such as these:

var(’t x y’)

f(t,x,y) = (x - x*y/2, -0.75*y + 0.25*x*y)

keepCoords = [1,2]

pts = vrk(f, [1,2], 0, 7, 200, keepCoords)

list_plot(pts, plotjoined=True) # plots the soln (x(t),y(t)) in phase plane

Higher order systems

The study of 1st order systems of DEs is far more important than it may appear at first glance. The
reason is that both higher order scalar DEs and higher order systems of DEs can always be recast
as 1st order systems. Section 7.1 in the text discusses this conversion process at some length. We
demonstrate the process here with a single example.

Example 7: The Two-Body Problem

Assume a “planet” (or other heavenly body) of mass M is fixed at point p0, 0q. There is a
satellite of mass m orbiting this planet, whose position we label px, yq “ pxptq, yptqq. The
gravitational force between planet and satellite as felt by the satellite has

magnitude “ GMm
x2 ` y2 , and direction vector direction “ p´x,´yq

px2 ` y2q1{2
.

By Newton’s Law F “ ma, we obtain the system of 2nd order DEs

d2x
dt2 “ ´GMx

px2 ` y2q3{2
,

d2y
dt2 “ ´GMy

px2 ` y2q3{2
.

(2)

To convert this to a 1st order system, introduce new dependent variables u “ dx{dt, v “ dy{dt.
The symbols d2x{dt2 and d2y{dt2 in system (2) may now be replaced by du{dt and dv{dt

7

MATH 231 Lecture Notes Higher order systems

respectively, yielding this 1st order system:

dx
dt

“ u,

du
dt

“ ´GMx
px2 ` y2q3{2

,

dy
dt

“ v,

dv
dt

“ ´GMy
px2 ` y2q3{2

.

(3)

To solve this problem numerically using RK4, and graph the motion of the satellite in time,
we carry out the following commands, in which we assume G “ M “ 1, as well as these ICs:

xp0q “ 1, up0q “ 0, yp0q “ 0, vp0q “ 0.75.

var(’t x y’)

f(t,x,dx,y,dy) = (dx, -x/(xˆ2+yˆ2)ˆ(3/2), dy, -y/(xˆ2+yˆ2)ˆ(3/2))

keepCoords = [1,3]

pts = vrk(f, [1,0,0,0.75], 0, 3, 100, keepCoords)

list_plot(pts, plotjoined=True)

8

