
MATH 231 Lecture Notes 1st Order Systems of ODEs

Example 6: Numerical solution of Volterra Predator–Prey Eqns

Suppose a “ 1, b “ 0.5, c “ ´0.75 and d “ 0.25 in the predator–prey equations (1). Use
4th order RK to find the solution passing through the IC xp0q “ 1, yp0q “ 2.

Note that, while the lines of code for the algorithm above must be implemented, they do little
until more code is introduced to initiate the specifics of the problem at hand and to call the
vrk routine. In the case of our problem, we run commands such as these:

var(’t x y’)

f(t,x,y) = (x - x*y/2, -0.75*y + 0.25*x*y)

keepCoords = [1,2]

pts = vrk(f, [1,2], 0, 7, 200, keepCoords)

list_plot(pts, plotjoined=True) # plots the soln (x(t),y(t)) in phase plane

7

S

ol tii

E
error

Earth mass M always at top
Satellite at position Ntl gk dist waitvector

proportionalto iffy
h

Iv FFmoi x mM
Fist magnitude direction



MATH 231 Lecture Notes Higher order systems

Higher order systems

The study of 1st order systems of DEs is far more important than it may appear at first glance. The
reason is that both higher order scalar DEs and higher order systems of DEs can always be recast
as 1st order systems. Section 7.1 in the text discusses this conversion process at some length. We
demonstrate the process here with a single example.

Example 7: The Two-Body Problem

Assume a “planet” (or other heavenly body) of mass M is fixed at point p0, 0q. There is a
satellite of mass m orbiting this planet, whose position we label px, yq “ pxptq, yptqq. The
gravitational force between planet and satellite as felt by the satellite has

magnitude “ GMm
x2 ` y2 , and direction vector direction “ p´x,´yq

px2 ` y2q1{2
.

By Newton’s Law F “ ma, we obtain the system of 2nd order DEs

d2x
dt2 “ ´GMx

px2 ` y2q3{2
,

d2y
dt2 “ ´GMy

px2 ` y2q3{2
.

(2)

To convert this to a 1st order system, introduce new dependent variables u “ dx{dt, v “ dy{dt.
The symbols d2x{dt2 and d2y{dt2 in system (2) may now be replaced by du{dt and dv{dt
respectively, yielding this 1st order system:

dx
dt

“ u,

du
dt

“ ´GMx
px2 ` y2q3{2

,

dy
dt

“ v,

dv
dt

“ ´GMy
px2 ` y2q3{2

.

(3)

To solve this problem numerically using RK4, and graph the motion of the satellite in time,
we carry out the following commands, in which we assume G “ M “ 1, as well as these ICs:

xp0q “ 1, up0q “ 0, yp0q “ 0, vp0q “ 0.75.

var(’t x y’)

f(t,x,dx,y,dy) = (dx, -x/(xˆ2+yˆ2)ˆ(3/2), dy, -y/(xˆ2+yˆ2)ˆ(3/2))

keepCoords = [1,3]

pts = vrk(f, [1,0,0,0.75], 0, 3, 100, keepCoords)

list_plot(pts, plotjoined=True)
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