

Problem: n dep. vars. x_1, \dots, x_n , 1st order,
w/ 1st - deriv. solved for $\underline{\text{non-homogeneous}}$

Wednesday, March 17th 2021

Wk 7, We

Topic:: Existence and uniqueness wrapup

Read:: ODELA 3.2-3.4

HW:: HC03 due Mar. 23

most general
1st - order
system
& linear
DE's
in
vars.
SOL.

$$\left\{ \begin{array}{l} x_1' = a_{11}(t)x_1 + \dots + a_{1n}(t)x_n + f_1(t) \\ x_2' = a_{21}(t)x_1 + \dots + a_{2n}(t)x_n + f_2(t) \\ \vdots \\ x_n' = a_{n1}(t)x_1 + \dots + a_{nn}(t)x_n + f_n(t) \end{array} \right.$$

Problem $\vec{x}' = \vec{A}\vec{x}$

- homogeneous, constant coefficient version of

$$\vec{x}' = \vec{A}(t)\vec{x} + \vec{f}(t)$$

- how it looks written out as a system of equations

- why eigenpairs of A are relevant

$$\begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{bmatrix} = \begin{bmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ a_{21}(t) & \dots & a_{2n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \dots & a_{nn}(t) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_n(t) \end{bmatrix}$$

Solve

$$1. \vec{x}' = [1 \ 1; 3 \ -1] \vec{x}, \quad \vec{x}(0) = [4; 0]$$

$$2. \vec{x}' = [2 \ 1; 1 \ 2] \vec{x}$$

$$3. \vec{x}' = [0 \ 2 \ 4; -5 \ -11 \ -20; 2 \ 4 \ 7] \vec{x}$$

Show direction fields

First Order Linear, Homogeneous Systems with Constant Coefficients

The problems we are solving here are, for some positive integer $n > 0$, of the form

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \text{or, more simply} \quad \vec{x}' = \vec{A}\vec{x}. \quad (1)$$

We have seen that, for solutions of the form $e^{\lambda t}\vec{v}$ to exist (where \vec{v} is a vector in \mathbb{R}^n), it is necessary that (λ, \vec{v}) be an eigenpair of \vec{A} . If we can find n linearly independent solutions of this form

$$e^{\lambda_1 t}\vec{v}_1, \quad e^{\lambda_2 t}\vec{v}_2, \quad \dots, \quad e^{\lambda_n t}\vec{v}_n,$$

then these solutions form a **fundamental set of solutions** to (1), giving us its general solution

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2 + \cdots + c_n e^{\lambda_n t} \mathbf{v}_n.$$

Here are some useful facts to know.

Theorem 1: Suppose \mathbf{A} is an n -by- n matrix with entries that are real numbers.

1. If $\lambda_1, \dots, \lambda_n$ are the eigenvalues of \mathbf{A} , then $\det(\mathbf{A}) = \lambda_1 \lambda_2 \cdots \lambda_n$, the product of eigenvalues. [This part of the theorem is, in fact, true even in the more general case where entries of \mathbf{A} are complex numbers.]
2. If $\lambda = \alpha + i\beta$ (with α, β both real and $\beta \neq 0$) is an eigenvalue of \mathbf{A} with corresponding eigenvector $\mathbf{v} = \mathbf{u} + i\mathbf{w}$ (where all the entries of \mathbf{u} and \mathbf{w} are real numbers), then the complex conjugate $\bar{\lambda} = \alpha - i\beta$ is an eigenvalue of \mathbf{A} as well, with corresponding eigenvector $\mathbf{u} - i\mathbf{w}$.
3. If the eigenvalues $\lambda_1, \dots, \lambda_n$ are n distinct complex numbers, with corresponding eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$, then $\{e^{\lambda_1 t} \mathbf{v}_1, e^{\lambda_2 t} \mathbf{v}_2, \dots, e^{\lambda_n t} \mathbf{v}_n\}$ is a fundamental set of solutions to $\mathbf{x}' = \mathbf{A}\mathbf{x}$.
4. If, for each eigenvalue of \mathbf{A} , the geometric multiplicity equals the algebraic multiplicity, then by choosing a basis of eigenvectors corresponding to each eigenvalue and amassing them into the collection $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, one again obtains a fundamental set of solutions $\{e^{\lambda_1 t} \mathbf{v}_1, e^{\lambda_2 t} \mathbf{v}_2, \dots, e^{\lambda_n t} \mathbf{v}_n\}$. (Here, λ_j is the eigenvalue that goes with eigenvector \mathbf{v}_j .)
5. If \mathbf{A} is a **symmetric** matrix (that is, $a_{ij} = a_{ji}$ for each $1 \leq i, j \leq n$), then the eigenvalues are all *real* numbers whose geometric multiplicities equal their algebraic multiplicities. Moreover, eigenvectors corresponding to *distinct* eigenvalues are orthogonal, and there exists an *orthogonal* basis of \mathbb{R}^n consisting of eigenvectors of \mathbf{A} .

Most of the matrices \mathbf{A} whose eigenpairs we have calculated have fallen into case 3 of this theorem, giving us, in theory, a fundamental set of solutions to $\mathbf{x}' = \mathbf{A}\mathbf{x}$. The one true exception was the matrix

$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

for which one eigenvalue, (-1) had algebraic multiplicity two but geometric multiplicity one. It is in cases such as these that we must work hardest to obtain a fundamental set of solutions.

Direction fields

For an *autonomous* 1st order (perhaps nonlinear) system $\mathbf{x}' = \mathbf{Ax}$ where \mathbf{A} is n -by- n , with $n = 2$ or $n = 3$, it is possible to draw a **direction field** in the appropriate **phase space** (called the **phase plane** when $n = 2$). The idea in the $n = 2$ linear case is that, at any point $\mathbf{x} = (x_1, x_2)$, we have

$$\begin{pmatrix} dx_1/dt \\ dx_2/dt \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \Rightarrow \quad \frac{dx_2}{dx_1} = \frac{dx_2/dt}{dx_1/dt} = \frac{a_{21}x_1 + a_{22}x_2}{a_{11}x_1 + a_{12}x_2}.$$

(The same idea works, with only slight modification, in the case of nonlinear autonomous 1st order systems.) One can place a hash mark with slope dx_2/dx_1 at the point (x_1, x_2) . It is, of course, convenient to hand this task over to a software package. See the PPLANE applet at <http://math.rice.edu/%7edfield/dfpp.html>.

Example 1:

Look at direction fields for

1. the nonlinear system

$$\begin{aligned} dx/dt &= 2x - y + 3(x^2 - y^2) + 2xy, \\ dy/dt &= x - 3y - 3(x^2 - y^2) + 3xy, \end{aligned} \quad \text{or} \quad \begin{aligned} dx/dt &= 1 - x - \frac{4xy}{1 + x^2}, \\ dy/dt &= x \left(1 - \frac{y}{1 + x^2}\right). \end{aligned}$$

The former is the default when the PPLANE applet starts up. The latter was introduced in a paper by Lengyel & Epstein from 1991 related to their study of the chlorine dioxide-iodine-malonic acid (ClO₂-I₂-MA) reaction.

2. $\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.
3. $\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

■

Classifying equilibrium solutions for $\mathbf{x}' = \mathbf{Ax}$

Sticking to the linear case, let us assume, for the moment, that $\det(\mathbf{A}) \neq 0$. We have an equilibrium point \mathbf{x} when the rates of change $dx_1/dt, \dots, dx_n/dt$ are simultaneously zero—that is, whenever $\mathbf{x}' = \mathbf{Ax} = \mathbf{0}$. When $\det(\mathbf{A}) = 0$ there are infinitely many equilibrium points, but as we are assuming $\det(\mathbf{A}) \neq 0$, $\mathbf{x} = \mathbf{0}$ is the only one. We wish, now, to classify this equilibrium point. Our

discussion will focus on systems in which the matrix \mathbf{A} is 2-by-2, but the ideas extend to higher dimensions. We will look at two important cases now, and return to cover other cases later.

Example 2: \mathbf{A} has real eigenvalues of opposite sign

$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Plot the direction field and use the general solution to explain what it shows. The origin is classified as a **saddle point**.

■

Example 3: \mathbf{A} has real, distinct eigenvalues of same (positive) sign

$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Plot the direction field and use the general solution to explain what it shows. The origin is classified as an **unstable node**.

■

Example 4: \mathbf{A} has real, distinct eigenvalues of same (negative) sign

$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 & 2 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Plot the direction field and use the general solution to explain what it shows. The origin is classified as an **asymptotically stable node**.

■

Guess Monday that perhaps sols. of

$$\begin{bmatrix} x_1' \\ \vdots \\ x_n' \end{bmatrix} = A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

might be exponential form:

$$\vec{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} = e^{\lambda t} \vec{v}$$

\uparrow
 Const vector

If such a guess works, then

$$\text{LHS: } \frac{d}{dt} \vec{x}(t) \stackrel{\text{our guess}}{=} \frac{d}{dt} \left(e^{\lambda t} \vec{v} \right) = \lambda e^{\lambda t} \cdot \vec{v} \quad \begin{pmatrix} \text{constant-mult.} \\ \text{rule of differentiation} \end{pmatrix}$$

$$\text{RHS: } A \vec{x}(t) \stackrel{\text{insert guess}}{=} A \cdot \left(e^{\lambda t} \vec{v} \right) = e^{\lambda t} A \vec{v}$$

So, for our guess to solve $\vec{x}' = A \vec{x}$, we require

$$\lambda e^{\lambda t} \vec{v} = e^{\lambda t} A \vec{v}$$

or, dividing by $e^{\lambda t}$, get

$$\lambda \vec{v} = A \vec{v}$$

So this yields a nontrivial result precisely when (λ, \vec{v}) form an eigenpair of A .

Ex. $\dot{\vec{x}}' = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \vec{x}$, subj. to $\vec{x}(0) = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$

(Note: Same as problem

$$x_1' = x_1 + x_2, \quad x_1(0) = 4$$

$$x_2' = 3x_1 - x_2, \quad x_2(0) = 0$$

First, find e-vals of $A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$. Solve

$$0 = \det(A - \lambda I) = \begin{vmatrix} 1-\lambda & 1 \\ 3 & -1-\lambda \end{vmatrix} = (1-\lambda)(-1-\lambda) - 3$$

$$= \lambda^2 - 1 - 3 = \lambda^2 - 4 = (\lambda - 2)(\lambda + 2)$$

\Rightarrow e-vals $\lambda = -2, 2$.

Corresp. to $\lambda = -2$: $\text{Null}(A - (-2)I)$ contains e-vectors

$$\begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix} \vec{v} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

free col.

$$\begin{bmatrix} 3 & 1 & | & 0 \\ 3 & 1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \rightarrow 3v_1 + v_2 = 0$$

$$v_1 = -\frac{1}{3}v_2$$

e-vectors corresp. to $\lambda = -2$ look like

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} -1/3v_2 \\ v_2 \end{bmatrix} = \frac{1}{3}v_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

representative (basis)
for e-vectors in E_{-2} .

For $\lambda = 2$

$$(A - 2I) = \begin{bmatrix} -1 & 1 \\ 3 & -3 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \rightarrow -v_1 + v_2 = 0$$

Corresp. e-vectors

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_2 \\ v_2 \end{bmatrix} = v_2 \underbrace{\begin{bmatrix} 1 \\ 1 \end{bmatrix}}_{\text{basis vector for } E_2}.$$

Obtained e-pairs:

$$\begin{array}{c} \lambda \\ \hline -2 \\ 2 \end{array} \quad \begin{array}{c} \text{basis e-vector} \\ \hline \begin{bmatrix} -1 \\ 3 \end{bmatrix} \\ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{array}$$

and our earlier derivation says

$$e^{-2t} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -e^{-2t} \\ 3e^{-2t} \end{bmatrix} \quad \text{solves } \vec{x}' = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \vec{x}$$

and so does

$$e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} e^{2t} \\ e^{2t} \end{bmatrix}$$

However, when $t = 0$ is plugged in to either one

$$t = 0 : \begin{bmatrix} -e^{-2(0)} \\ 3e^{-2(0)} \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \quad \text{Not} \quad \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

$$t=0: \begin{bmatrix} e^{2(0)} \\ e^{2(0)} \\ e^{2(0)} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \text{Not} \quad \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}$$

So neither soln on its own satisfies the IC.

What does (while still solving $\dot{\vec{x}}' = A\vec{x}$) is an appropriately-chosen linear combination

$$\dot{\vec{x}}(t) = c_1 e^{-2t} \begin{bmatrix} -1 \\ 3 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

must choose c_1, c_2

Choose using the IC: Need

$$\begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} = \dot{\vec{x}}(0) = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

Use GE to get c_1, c_2 :

$$\left[\begin{array}{cc|c} -1 & 1 & 4 \\ 3 & 1 & 0 \end{array} \right] \xrightarrow{\text{RREF}} \left[\begin{array}{cc|c} 1 & 0 & -1 \\ 0 & 1 & 3 \end{array} \right]$$

$$\text{So } c_1 = -1, c_2 = 3$$

and the soln. is

$$\vec{x}(t) = -1 e^{-2t} \begin{bmatrix} -1 \\ 3 \end{bmatrix} + 3 e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-2t} + 3e^{2t} \\ -3e^{-2t} + 3e^{2t} \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Ex. $\vec{x}' = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \vec{x} \Leftrightarrow \begin{cases} x'_1 = 2x_1 + x_2 \\ x'_2 = x_1 + 2x_2 \end{cases}$

Find e-pairs :

$$\frac{\lambda}{3}$$

basis e-vectors

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$1$$

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

General soln. is any linear comb. of

$$e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

so

$$c_1 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix} \cdot \begin{pmatrix} \text{as far as we} \\ \text{can go w/out} \\ I C \end{pmatrix}$$