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Show direction fields

First Order Linear, Homogeneous Systems with Constant Coefficients

The problems we are solving here are, for some positive integer n > 0, of the form

X1 aj;p a4z -0 A\ (X1

d | x2 a1 Ay v A || X2 ) ,

Il 1= ] L . e or, more simply X = Ax. (1)
Xn Anl 42 - Gun Xn

We have seen that, for solutions of the form eMv to exist (where v is a vector in R"), it is necessary
that (A, v) be an eigenpair of A. If we can find 7 linearly independent solutions of this form

Aqt Aot Aut
e'vy, evy, ..., e'vy,
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then these solutions form a fundamental set of solutions to (1), giving us its general solution

At

x(t) = Cle A\ + C2€A2tv2 + .-+ CneAﬂtVn.

Here are some useful facts to know.

Theorem 1: Suppose A is an n-by-n matrix with entries that are real numbers.

1. If Ay, ..., A, are the eigenvalues of A, then det(A) = AjAy---A,, the product of
eigenvalues. [This part of the theorem is, in fact, true even in the more general case
where entries of A are complex numbers.]

2. If A = a + if (with a, f both real and g # 0) is an eigenvalue of A with corresponding
eigenvector v = u + iw (where all the entries of u and w are real numbers), then
the complex conjugate A = a — if is an eigenvalue of A as well, with corresponding
eigenvector u — iw.

3. If the eigenvalues Ay, ..., A, are n distinct complex numbers, with corresponding

Aqt A

eigenvectors vy, . .., vy, then {e*ttvy, et2fvy, .., e tv,} is a fundamental set of solutions

to X' = Ax.

4. If, for each eigenvalue of A, the geometric multiplicity equals the algebraic multi-
plicity, then by choosing a basis of eigenvectors corresponding to each eigenvalue
and amassing them into the collection {vj,...,v,}, one again obtains a fundamental

A

set of solutions {e'fvy, et?tvy, ..., eMtv,}. (Here, Aj is the eigenvalue that goes with

eigenvector v;.)

5. If A is a symmetric matrix (that is, a;; = aj; for each 1 < i, j < n), then the eigenvalues
are all real numbers whose geometric multiplicities equal their algebraic multiplicities.
Moreover, eigenvectors corresponding to distinct eigenvalues are orthogonal, and
there exists an orthogonal basis of R" consisting of eigenvectors of A.

Most of the matrices A whose eigenpairs we have calculated have fallen into case 3 of this theorem,
giving us, in theory, a fundamental set of of solutions to X' = Ax. The one true exception was the

matrix
-1 1 0
A = 0O -1 01,
0 0o 2

for which one eigenvalue, (—1) had algebraic multiplicity two but geometric multiplicity one. It
is in cases such as these that we must work hardest to obtain a fundamental set of solutions.
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Direction fields

For an autonomous 15t order (perhaps nonlinear) system x' = Ax where A is n-by-n, with n = 2 or
n = 3, it possible to draw a direction field in the appropriate phase space (called the phase plane
when n = 2). The idea in the n = 2 linear case is that, at any point x = (x1,x2), we have

dep/dt\  fan ap) (x _ dxa  dxp/dt anxi +anx
dxy /dt ay am ) \x2)’ dxq dxy/dt a11X1 + appxy’

(The same idea works, with only slight modification, in the case of nonlinear autonomous 15t order

systems.) One can place a hash mark with slope dxp/dx; at the point (x1,x2). It is, of course,
convenient to hand this task over to a software package. See the PPLANE applet at http://math.
rice.edu/%7edfield/dfpp.html.

Example 1:

Look at direction fields for

1. the nonlinear system

dxy
dxe/dt = 2x—y+3(x*>—y?) +2xy, 1+ x2

or
dy/dt = x—3y— 3(x* —y?) + 3xy, dy/dt X <1 4 > .

dx/dt = 1—x—

1422

The former is the default when the PPLANE applet starts up. The latter was introduced
in a paper by Lengyel & Epstein from 1991 related to their study of the chlorine dioxide-
iodine-malonic acid (ClO;-1,-MA) reaction.

060
40690

Classifying equilibrium solutions for x' = Ax

Sticking to the linear case, let us assume, for the moment, that det(A) # 0. We have an equilibrium
point x when the rates of change dx;/dt, ...dx,/dt are simultaneously zero—that is, whenever
x' = Ax = 0. When det(A) = 0 there are infinitely many equilibrium points, but as we are

assuming det(A) # 0, x = 0 is the only one. We wish, now, to classify this equilibrium point. Our
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discussion will focus on systems in which the matrix A is 2-by-2, but the ideas extend to higher
dimensions. We will look at two important cases now, and return to cover other cases later.

Example 2: A has real eigenvalues of opposite sign

1 1

% (x) = <3 1) (x) Plot the direction field and use the general solution to explain
Yy - Yy

what it shows. The origin is classified as a saddle point.

Example 3: A has real, distinct eigenvalues of same (positive) sign

21
% (x) = (1 2) (x) . Plot the direction field and use the general solution to explain what
Yy y

it shows. The origin is classified as an unstable node.

Example 4: A has real, distinct eigenvalues of same (negative) sign

-5 2
% (x) = < 1 2) (x) . Plot the direction field and use the general solution to explain
y)  \-1 -2)\y

what it shows. The origin is classified as an asymptotically stable node.
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