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Problem x’ = Ax

- homogeneous, constant coefficient version of

x’ = A(t)x + f(t)

- how it looks written out as a system of equations

- why eigenpairs of A are relevant

Solve

1. x’ = [1 1; 3 -1] x, x(0) = [4; 0]

2. x’ = [2 1; 1 2] x

3. x’ = [0 2 4; -5 -11 -20; 2 4 7] x

Show direction fields

First Order Linear, Homogeneous Systems with Constant Coe�cients

The problems we are solving here are, for some positive integer n ° 0, of the form
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, or, more simply x1 “ Ax. (1)

We have seen that, for solutions of the form e�tv to exist (where v is a vector in Rn), it is necessary
that p�,vq be an eigenpair of A. If we can find n linearly independent solutions of this form

e�1tv1, e�2tv2, . . . , e�ntvn,
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then these solutions form a fundamental set of solutions to (1), giving us its general solution

xptq “ c1e�1tv1 ` c2e�2tv2 ` ¨ ¨ ¨ ` cne�ntvn.

Here are some useful facts to know.

Theorem 1: Suppose A is an n-by-n matrix with entries that are real numbers.

1. If �1, . . . , �n are the eigenvalues of A, then detpAq “ �1�2 ¨ ¨ ¨�n, the product of
eigenvalues. [This part of the theorem is, in fact, true even in the more general case
where entries of A are complex numbers.]

2. If � “ ↵` i� (with ↵, � both real and � , 0) is an eigenvalue of A with corresponding
eigenvector v “ u ` iw (where all the entries of u and w are real numbers), then
the complex conjugate � “ ↵ ´ i� is an eigenvalue of A as well, with corresponding
eigenvector u ´ iw.

3. If the eigenvalues �1, . . . , �n are n distinct complex numbers, with corresponding
eigenvectors v1, . . . , vn, then te�1tv1, e�2tv2, . . . , e�ntvnu is a fundamental set of solutions
to x1 “ Ax.

4. If, for each eigenvalue of A, the geometric multiplicity equals the algebraic multi-
plicity, then by choosing a basis of eigenvectors corresponding to each eigenvalue
and amassing them into the collection tv1, . . . ,vnu, one again obtains a fundamental
set of solutions te�1tv1, e�2tv2, . . . , e�ntvnu. (Here, � j is the eigenvalue that goes with
eigenvector v j.)

5. If A is a symmetric matrix (that is, aij “ aji for each 1 § i, j § n), then the eigenvalues
are all real numbers whose geometric multiplicities equal their algebraic multiplicities.
Moreover, eigenvectors corresponding to distinct eigenvalues are orthogonal, and
there exists an orthogonal basis of Rn consisting of eigenvectors of A.

Most of the matrices A whose eigenpairs we have calculated have fallen into case 3 of this theorem,
giving us, in theory, a fundamental set of of solutions to x1 “ Ax. The one true exception was the
matrix

A “

¨

˚̋
´1 1 0
0 ´1 0
0 0 2

˛

‹‚,

for which one eigenvalue, p´1q had algebraic multiplicity two but geometric multiplicity one. It
is in cases such as these that we must work hardest to obtain a fundamental set of solutions.
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Direction fields

For an autonomous 1st order (perhaps nonlinear) system x1 “ Ax where A is n-by-n, with n “ 2 or
n “ 3, it possible to draw a direction field in the appropriate phase space (called the phase plane
when n “ 2). The idea in the n “ 2 linear case is that, at any point x “ px1, x2q, we have

˜
dx1{dt
dx2{dt

¸

“
˜

a11 a12

a21 a22

¸ ˜
x1

x2

¸

, ñ dx2

dx1
“ dx2{dt

dx1{dt
“ a21x1 ` a22x2

a11x1 ` a12x2
.

(The same idea works, with only slight modification, in the case of nonlinear autonomous 1st order
systems.) One can place a hash mark with slope dx2{dx1 at the point px1, x2q. It is, of course,
convenient to hand this task over to a software package. See the PPLANE applet at http://math.
rice.edu/%7edfield/dfpp.html.

Example 1:

Look at direction fields for

1. the nonlinear system

dx{dt “ 2x ´ y ` 3px2 ´ y2q ` 2xy,
dy{dt “ x ´ 3y ´ 3px2 ´ y2q ` 3xy,

or
dx{dt “ 1 ´ x ´ 4xy

1 ` x2 ,

dy{dt “ x
ˆ

1 ´ y
1 ` x2

˙
.

The former is the default when the PPLANE applet starts up. The latter was introduced
in a paper by Lengyel & Epstein from 1991 related to their study of the chlorine dioxide-
iodine-malonic acid (ClO2-I2-MA) reaction.

2.
d
dt

˜
x
y

¸

“
˜

1 1
3 ´1

¸ ˜
x
y

¸

.

3.
d
dt

˜
x
y

¸

“
˜

2 1
1 2

¸ ˜
x
y

¸

.

Classifying equilibrium solutions for x1 “ Ax

Sticking to the linear case, let us assume, for the moment, that detpAq , 0. We have an equilibrium
point x when the rates of change dx1{dt, . . . dxn{dt are simultaneously zero—that is, whenever
x1 “ Ax “ 0. When detpAq “ 0 there are infinitely many equilibrium points, but as we are
assuming detpAq , 0, x “ 0 is the only one. We wish, now, to classify this equilibrium point. Our
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discussion will focus on systems in which the matrix A is 2-by-2, but the ideas extend to higher
dimensions. We will look at two important cases now, and return to cover other cases later.

Example 2: A has real eigenvalues of opposite sign

d
dt

˜
x
y

¸

“
˜

1 1
3 ´1

¸ ˜
x
y

¸

. Plot the direction field and use the general solution to explain

what it shows. The origin is classified as a saddle point.

Example 3: A has real, distinct eigenvalues of same (positive) sign

d
dt

˜
x
y

¸

“
˜

2 1
1 2

¸ ˜
x
y

¸

. Plot the direction field and use the general solution to explain what

it shows. The origin is classified as an unstable node.

Example 4: A has real, distinct eigenvalues of same (negative) sign

d
dt

˜
x
y

¸

“
˜

´5 2
´1 ´2

¸ ˜
x
y

¸

. Plot the direction field and use the general solution to explain

what it shows. The origin is classified as an asymptotically stable node.
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