Math 231, Thu 18-Mar-2021 -- Thu 18-Mar-2021
Differential Equations and Linear Algebra
Spring 2020

Wk 7, Th
Topic:: Fund’l matrix and Wronskian
Read:: ODELA 3.5

W ronsl.on

dek



MATH 231 Lecture Notes

Fundamental set of solutions

In both Chapters 2 and 3, we encounter the homogeneous linear problem
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where x(t) = (x1(t), x2(t), ..., x,(t)) is a vector function, meaning thatTor eachinput ¢, x(t) is in R".
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C\.. 7 —> e Case:n=1:
This is the 1-dimensional case studied in Chapter 2, where the "matrix” A(t) is 1-by-1 whose
only entry is a(t). The solution of (1) is % a(p) dt

where @is arbitrary, representing one degree of freedom.

- :
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The eigenvalue A = —2 has eigenspace E_, with basis vecto
The eigenvalue A = 2 has eigenspace E, with basis vecto
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The eigenvalue A = 1 has eigenspace E; with basis vector [ 1] AR Ve 0 \
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The eigenvalue A = 3 has eigenspace E3 with basis vector [1]

The general solution:
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The eigenvalue A = —2 has eigenspace E_, with basis vector [—5]
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General solutions

We say x;(t) = ®(t)c is the general solution for x’ = Ax on an open interval I = (a,b) if all
solutions of the latter take the form of the former—i.e., if all solutions of X’ = Ax are writeable
as linear combinations of the columns of ®(t). This is true for the examples above, and is true
whenever all these criteria are met:

o d(t), like A, is n-by-n square.

e each column of @(t) is a solution of x' = Ax.

e the matrix @(t) is nonsingular for t € I. This is needed so that, for any t; € I, a unique choice
of vector ¢ = {c1, ¢, ..., c,) exists so that the iniW(to) = k can be met, regardless
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Some deep insights: ‘/k ) é U’ 7 \ c
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1. Eigenvectors corresponding to distinct eigenvalues are linearly independent.

2. In our constructions above, @(0) is simply a matrix whose columns are basis eigenvectors
from all the eigenspaces. So long as no eigenvalue is degenerate, the last fact means that
®@(0) is nonsingular.

3. Abel’s Theorem: If the columns of d(t) all solve x = Ax on the open interval I = (a,b), then
either

e d(t)is singular at every t € I, or

e @(t) is nonsingular at every f € I. In particular, if 0 € I and @(0) is nonsingular, that is
enough to conclude ®(t) stays nonsingular throughout I.

4. For the constant-coefficient case, where A(f) is a constant matrix, the interval [ = (—o0, c0).

The upshot: So long as no eigenvalue of the n-by-n matrix A is degenerate, our construction leads
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to a general solution.
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An adjustment to the method fo@
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