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Fundamental set of solutions

In both Chapters 2 and 3, we encounter the homogeneous linear problem

dx
dt

“ Aptqx,

where xptq “ ⌦x1ptq, x2ptq, . . . , xnptq↵ is a vector function, meaning that for each input t, xptq is inRn
.

• Case: n “ 1:

This is the 1-dimensional case studied in Chapter 2, where the ”matrix” Aptq is 1-by-1 whose

only entry is aptq. The solution of (1) is

xptq “ 'ptqc,

where c P R is arbitrary, representing one degree of freedom.

• Case: n ° 1, Aptq “ A (a constant n-by-n matrix):

Examples so far include
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General solutions

We say xhptq “ �ptqc is the general solution for x1 “ Ax on an open interval I “ pa, bq if all

solutions of the latter take the form of the former—i.e., if all solutions of x1 “ Ax are writeable

as linear combinations of the columns of �ptq. This is true for the examples above, and is true

whenever all these criteria are met:

• �ptq, like A, is n-by-n square.

• each column of�ptq is a solution of x1 “ Ax.

• the matrix�ptq is nonsingular for t P I. This is needed so that, for any t0 P I, a unique choice

of vector c “ hc1, c2, . . . , cni exists so that the initial condition xpt0q “ k can be met, regardless

of k P Rn
.

Some deep insights:

1. Eigenvectors corresponding to distinct eigenvalues are linearly independent.

2. In our constructions above, �p0q is simply a matrix whose columns are basis eigenvectors

from all the eigenspaces. So long as no eigenvalue is degenerate, the last fact means that

�p0q is nonsingular.

3. Abel’s Theorem: If the columns of�ptq all solve x “ Ax on the open interval I “ pa, bq, then

either

• �ptq is singular at every t P I, or

• �ptq is nonsingular at every t P I. In particular, if 0 P I and�p0q is nonsingular, that is

enough to conclude�ptq stays nonsingular throughout I.

4. For the constant-coe�cient case, where Aptq is a constant matrix, the interval I “ p´8,8q.

The upshot: So long as no eigenvalue of the n-by-n matrix A is degenerate, our construction leads

to a general solution.
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An adjustment to the method for nonreal eigenvalues
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