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Topic:: Homogeneous linear systems

Topic:: Degenerate eigenvalues

Warmup:

1. x’ = [-1 -3; 6 5] x

Did on Friday

eigenpairs: 2-3i with <1,-1> + <0,1> i

2+3i with <1,-1> - <0,1> i

general solution:

x(t) = c_1 eˆ{2t}(cos(3t) <1,-1> + sin(3t) <0,1>)

+ c_2 eˆ{2t}(cos(3t) <1,-1> + sin(3t) <0,1>)

phase portrait (origin is unstable, of type "spiral point")

Note:

If trajectories were orbits, call origin a "center", stable

This happens precisely when eigenvalues of 2-by-2 A are purely imaginary.

2. Suppose x’ = Ax had

eigenvalue 2, with basis eigenvectors <3, 1, 0, -1>, <2, 0, -1, 1>

eigenvalue -1-i, with basis eigenvector <1+i, 2-3i, -4i, 7>

Write the general solution

Degenerate eigenvalues
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1st Order Linear Homogeneous Systems with Constant Coe↵s x1 “ Ax

The case of nonreal eigenvalues

As we have seen, matrices with real-number entries can have nonreal eigenvalues. Suppose
� “ ↵` i� is an eigenvalue with ↵, � real and � , 0; denote its complex conjugate by � “ ↵´ i�. Let
v “ u ` iw be an eigenvector corresponding to �, with the entries of both u, w being real numbers.
We have seen that, using this notation, p�,vq “ p↵ ` i�,u ` iwq and p�,vq “ p↵ ´ i�,u ´ iwq are
eigenpairs of A.

Under the procedures we have learned for solving x1 “ Ax, we might include

x1ptq B e�tv and x2ptq B e�tv

in a fundamental set of solutions to x1 “ Ax. However, it might be preferable to replace these
two solutions with two others that have no references to i “

?
´1. The way we do this is nearly

identical to how we removed such references to i in the case of 2nd order linear homogeneous DEs.
We have

x1ptq “ e�tv “ ep↵`i�qtpu ` iwq “ e↵trcosp�tq ` i sinp�tqspu ` iwq
“ e↵trcosp�tqu ´ sinp�tqws ` i e↵trsinp�tqu ` cosp�tqws, and

x2ptq “ e�tv “ ep↵´i�qtpu ´ iwq “ e↵trcosp�tq ´ i sinp�tqspu ´ iwq
“ e↵trcosp�tqu ´ sinp�tqws ´ i e↵trsinp�tqu ` cosp�tqws.

Much as in the case of 2nd order linear homogeneous DEs, we take the following linear combina-
tions of these two solutions as members of our fundamental set instead:

x̃1ptq B 1
2

rx1ptq ` x2ptqs “ e↵trcosp�tqu ´ sinp�tqws

x̃2ptq B 1
2i

rx1ptq ´ x2ptqs “ e↵trsinp�tqu ` cosp�tqws.

Example 1: A planar system where the equilibrium at the origin is classified as a center

Problem: Consider the 1st order system
˜

x1

y1

¸

“
˜

´2 1
´8 2

¸ ˜
x
y

¸

.

Write the general solution in such a way that it has no nonreal parts. Then plot the correspond-
ing direction field along with a corresponding phase portrait, and classify the equilibrium at
p0, 0q.

Example 2: A planar system where the equilibrium at the origin is classified as a spiral point
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Problem: Consider the 1st order system
˜

x1

y1

¸

“
˜

3 4
´4 3

¸ ˜
x
y

¸

.

Write the general solution in such a way that it has no nonreal parts. Then plot the correspond-
ing direction field along with a corresponding phase portrait, and classify the equilibrium at
p0, 0q.

Example 3:

Problem: Consider the 1st order system
¨

˚̋
x1

y1

z1

˛

‹‚ “

¨

˚̋
1 ´1 1
1 1 ´1

´1 1 1

˛

‹‚

¨

˚̋
x
y
z

˛

‹‚.

Write the general solution in such a way that it has no nonreal parts.

The case when an eigenvalue has algebraic multiplicity ° geometric multiplicity

We know how to construct a fundamental set of solutions to the 1st order linear homogeneous
system x1 “ Ax with constant coe�cients in the case when each eigenvalue of A has geometric
multiplicity equal to its algebraic multiplicity. The problem, when some eigenvalue has geometric
multiplicity strictly less than its algebraic multiplicity is that there are not enough linearly inde-
pendent (L.I.) eigenvectors to go with that eigenvalue to fill out its portion of the fundamental set.
We investigate this situation next, beginning with a special case. Before doing so, we introduce a
couple new matrix-related concepts: the rank and nullity. For a given matrix A, rank pAq is the
number of linearly independent column vectors it has; nullity pAq is the di↵erence between the
number of columns in A and its rank. Here are some facts about the rank of a matrix.

Theorem 1: Suppose A is an m-by-n matrix with complex number entries.

1. rank pAq ` nullity pAq “ n.

2. Suppose R is an echelon form of A—i.e., A can be reduced to R by means of EROs.
Then rank pAq equals the number of pivot columns in R, and nullity pAq equals the
number of free columns in R.
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3. The value of rank pAq cannot exceed minpm,nq.

4. The number of linearly independent solutions to Av “ 0 equals nullity pAq.

5. If m “ n (so A is square), then A is nonsingular if and only if rank pAq “ n (if and
only if nullity pAq “ 0).

6. If m “ n and � is an eigenvalue of A, then the geometric multiplicity of � equals
nullity pA ´ �Iq.

An n-by-n matrix for which rank pAq † n (that is, nullity pAq ° 0) is said to be rank deficient.
Note that the eigenvalues of A are precisely those complex numbers � for which pA ´ �Iq is rank
deficient.

Case: geometric multiplicity = 1, algebraic multiplicity = 2

Let us suppose that � is an eigenvalue of A whose geometric multiplicity (GM) is 1 while its
algebraic multiplicity (AM) is 2. Because GM = 1, we know the collection of eigenvectors corre-
sponding to � has 1 degree of freedom, so a basis for these eigenvectors consists of just one vector.
(Said another way, nullity pA ´ �Iq “ 1.) Let us call this basis eigenvector v. Together, p�,vq give
us a solution x1ptq “ e�tv to x1 “ Ax, and we include it in the construction of a fundamental set of
solutions. Given both our experience solving higher-order linear DEs in Chs. 3-4 and the problem
from Apr. 6th ’s class, we suspect there is another linearly independent solution taking the form
xptq “ e�t⌘` te�tv. We plug this into the 1st order system:

x1 “ Ax becomes �e�t⌘` e�tv ` �te�tv “ Ape�t⌘` te�tvq
ñ �⌘` v ` �tv “ A⌘` tAv

ñ �v “ Av and �⌘` v “ A⌘

ñ pA ´ �Iqv “ 0 and pA ´ �Iq⌘ “ v.

The first of these equations indicates that, if a solution xptq of the form we proposed exists, then v is
an eigenvector. It is not obvious that the second equation has a solution but, under the conditions
of the scenario we are investigating, it does. (It has infinitely many, in fact, with GM = 1 degree
of freedom.) Taking one (representative) solution ⌘, the vector function x2ptq “ e�tp⌘ ` tvq solves
x1 “ Ax and is linearly independent from others obtained using eigenpairs, making up for the
deficiency in our fundamental set construction which occurred because � had GM = 1 and AM =
2.

Example 4:
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Problem: Find the solution to x1 “ Ax, with A “
˜

7 1
´4 3

¸

, subject to xp0q “ p2,´5q. Draw

the phase portrait for this system.

Case: geometric multiplicity = 1, algebraic multiplicity ° 1

Again, we assume � is an eigenvalue of A with GM = 1 or, equivalently, that nullity pAq “ 1.
Let v be a corresponding eigenvector. As we handled the case where AM = 2 above, we assume
here that AM = k ° 2 so that, along with e�tv, we must find k ´ 1 additional solutions associated
somehow with � to be included in our construction of a fundamental set of solutions to x1 “ Ax.
As before, we look for a solution of the form xptq “ e�tp⌘ ` tvq, which requires that we solve
pA ´ �Iq⌘ “ v. Since nullity pA ´ �Iq “ 1, there is just one degree of freedom in the collection of
vectors ⌘ that solve this problem, which means this process can give us just one additional entry
for our fundamental set. The key is that we will need to take this process up k levels. At level 1,
we find a representative eigenvector v. At level 2, we solve for a vector ⌘p1q in Rn that satisfies
pA ´�Iq⌘ “ v. At level 3, with ⌘p1q already fixed, we solve for ⌘p2q, and so on. This is summarized
in the table below.

Matrix Problem
Level to Be Solved Resulting Solution to x1 “ Ax

1 pA ´ �Iqv “ 0 e�tv

2 pA ´ �Iq⌘p1q “ v e�tp⌘p1q ` tvq

3 pA ´ �Iq⌘p2q “ ⌘p1q e�t
ˆ
⌘p2q ` t⌘p1q ` t2

2!
v

˙

4 pA ´ �Iq⌘p3q “ ⌘p2q e�t
ˆ
⌘p3q ` t⌘p2q ` t2

2!
⌘p1q ` t3

3!
v

˙

...
...

...

k pA ´ �Iq⌘pk´1q “ ⌘pk´2q e�t
ˆ
⌘pk´1q ` t⌘pk´2q ` ¨ ¨ ¨ ` tk´2

pk ´ 2q!
⌘p1q ` tk´1

pk ´ 1q!
v

˙

Example 5: After Exercise 17, Section 7.8

Problem: Find the general solution to x1 “ Ax when A “

¨

˚̋
1 1 1
2 1 ´1

´3 2 4

˛

‹‚.
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A word about the other cases

We have been discussing cases in which A has an eigenvalue whose GM † AM. We have stuck
to instances in which GM = 1. There are numerous ways in which one might encounter 1 † GM
† AM, and these are more complicated. We will illustrate the new wrinkles that appear in such
cases with an example, and leave the rest as a topic of exploration in an advanced course in ODEs.

Example 6: After Exercise 18, Section 7.8

Problem: Find the general solution to x1 “ Ax when A “

¨

˚̋
5 ´3 ´2
8 ´5 ´4

´4 3 3

˛

‹‚.
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