MATH 231 Lecture Notes 1st Order Linear Homogeneous Systems with Constant Coeffs x' = Ax

The case when an eigenvalue has algebraic multiplicity > geometric multiplicity

We know how to construct a fundamental set of solutions to the 15torder linear homogeneous
system x’ = Ax with constant coefficients in the case when each eigenvalue of A has geometric
multiplicity equal to its algebraic multiplicity. The problem, when some eigenvalue has geometric
multiplicity strictly less than its algebraic multiplicity is that there are not enough linearly inde-
pendent (L.1.) eigenvectors to go with that eigenvalue to fill out its portion of the fundamental set.
We investigate this situation next, beginning with a special case. Before doing so, we introduce a
couple new matrix-related concepts: the rank and nullity. For a given matrix A, rank (A) is the
number of linearly independent column vectors it has; nullity (A) is the difference between the
number of columns in A and its rank. Here are some facts about the rank of a matrix.

Theorem 1: Suppose A is an m-by-n matrix with complex number entries.

1. rank (A) + nullity (A) = n.

2. Suppose R is an echelon form of A—i.e., A can be reduced to R by means of EROs.
Then rank (A) equals the number of pivot columns in R, and nullity (A) equals the
number of free columns in R.

3. The value of rank (A) cannot exceed min(m, n).
4. The number of linearly independent solutions to Av = 0 equals nullity (A).

5. If m = n (so A is square), then A is nonsingular if and only if rank (A) = n (if and
only if nullity (A) = 0).

6. If m = n and A is an eigenvalue of A, then the geometric multiplicity of A equals
nullity (A — AI).

An n-by-n matrix for which rank (A) < n (that is, nullity (A) > 0) is said to be rank deficient.
Note that the eigenvalues of A are precisely those complex numbers A for which (A — AI) is rank
deficient.

Case: geometric multiplicity = 1, algebraic multiplicity = 2

~

Let us suppose that A is an eigenvalue of A whose geometric multiplicity (GM) is 1 while its
algebraic multiplicity (AM) is 2. Because GM = 1, we know the collection of eigenvectors corre-
sponding to A has 1 degree of freedom, so a basis for these eigenvectors consists of just one vector.
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(Said another way, nullity (A — AI) = 1.) Let us call this basis eigenvector v. Together, (A, v) give
us a solution x; (t) = eMv to X' = Ax, and we include it in the construction of a fundamental set of
solutions. Given both our experience solving higher-order linear DEs in Chs. 3-4 and the problem
from Apr. 61'’s class, we suspect there is another linearly independent solution taking the form
x(t) = eMn + teMv. We plug this into the 15t order system:

X = Ax  becomes  AeMn+eMv 4 Atettv = A(eMn + tetly)

= AN+ v+ Atv = An + tAv
= Av = Av and An+v = An
= (A—A)v = 0 and (A—ADnp = v.

The first of these equations indicates that, if a solution x(f) of the form we proposed exists, then v is
an eigenvector. It is not obvious that the second equation has a solution but, under the conditions
of the scenario we are investigating, it does. (It has infinitely many, in fact, with GM = 1 degree
of freedom.) Taking one (representative) solution 7, the vector function xx(t) = e (1 + tv) solves
x' = Ax and is linearly independent from others obtained using eigenpairs, making up for the
deficiency in our fundamental set construction which occurred because A had GM =1 and AM =
2.

Example 4:

7 1
Problem: Find the solution to x' = Ax, with A = ( 3) , subject to x(0) = (2, —5). Draw

the phase portrait for this system.
u

Case: geometric multiplicity = 1, algebraic multiplicity > 1

Again, we assume A is an eigenvalue of A with GM = 1 or, equivalently, that nullity (A) = 1.
Let v be a corresponding eigenvector. As we handled the case where AM = 2 above, we assume
here that AM = k > 2 so that, along with eMv, we must find k — 1 additional solutions associated
somehow with A to be included in our construction of a fundamental set of solutions to x’ = Ax.
As before, we look for a solution of the form x(t) = e*(n + tv), which requires that we solve
(A — AI)n = v. Since nullity (A — AI) = 1, there is just one degree of freedom in the collection of
vectors 17 that solve this problem, which means this process can give us just one additional entry
for our fundamental set. The key is that we will need to take this process up k levels. Atlevel 1,
we find a representative eigenvector v. At level 2, we solve for a vector (1) in R” that satisfies
(A — AI)n = v. Atlevel 3, with (1) already fixed, we solve for 1(?), and so on. This is summarized
in the table below.
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Matrix Problem

Level to Be Solved Resulting Solution to x’ = Ax
1 (A-A)v=0 eMy
2 (A— Ay = v MM 4 tv)
2
5 (A—ADy® = g0 o (n<2> L 4 éﬁ
® — g@ (@ 4@ 4 By B
4 (A=A =1 M (0 + @+ St 4 v

Example 5: After Exercise 17, Section 7.8

Problem: Find the general solution to X' = Ax when A
3
Jr(kaT) = - (-2

oM = | basis e-vedhve - (

— Selvees — —
) A-2T)% =7
A word about the other cases -
=V

We have been discussing cases in which A has an eigenvalue whose GM < AM. We have stuck

to instances in which GM = 1. There are numerous ways in which one might encounter 1 < GM
< AM, and these are more complicated. We will illustrate the new wrinkles that appear in such
cases with an example, and leave the rest as a topic of exploration in an advanced course in ODEs.

Example 6: After Exercise 18, Section 7.8

Al >GM > |

5 -3 -2
Problem: Find the general solution to X' = Axwhen A= | 8 -5 —4|.
-4 3 3
~_— |
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1st Order Linear Systems: Loose Ends




[:m/ A 1/‘(‘,\1'(, e §°\"\- o 7 :AX m Comy 'E(Dw\

(

e G 2 0 Seve CL$c e Coiu.wu\
I t oGSl ki $(e>)>
bub weed 3

Fﬂ’w M“\S“(\) [u-mbl (N 2“& S\, €>(.‘S‘\‘g GQ -Lzsvw\

aZt;f 5 )wztﬁ]
G ﬁ (s ijm%) <A 121 >;}$ _ I?

~

wi, S\ \\, . SI'D( —G’ < &ijm(ru)ﬂk)
e S M
!
- \ o [ o o | L \77=]
— \ -
P 1 l Cs, D ( \
-3 1L z | 0 D O N
-
A-21
\ | wi |l 0
—_ - LE + {
/Y) “ O ) ?/ Sola, e, 0
{ ( “\)
Cen <eyva &S GO Zh! on
i BLe)

"l

S‘H 0 "\(_(,L 'S 3



S;ML >\ =) S S'H( c\w\k’i[whn g‘““ cals. %“ Bft UI’>
’tf/\% ((kg ﬁ(M SQ,.US H’ S\Mw\i‘ We ""“"‘0 \Cs"\i o 93
PR S U ST

(AR

rd

- [ o o) v
7 -t o cs | g " 2|
_ D
3 2 K 00 O | J
A-17
Con fee, |
J,
W iwlx E \l
\I‘B
|
Moo e 378\ fel b g0t ] )] | o
C R Jr'/{
] )




MATH 231 Lecture Notes 1st Order Linear Systems: Loose Ends

General linear (possibly nonhomogeneous) problems

The most general linear 15t order system of DEs takes the form

s il sk P
X = A(H)x + £(1). nee W) 2 A 1)

That is, the coefficients of terms involving the components xi, ..., x, of x may be time-dependent
(resulting in a matrix A = A(t) which is time-dependent), and the problem under consideration
may not be homogeneous (resulting in a nonzero £(t) term). While it is not the only possibly route
to a solution, it is possible to attack the system (1) using the same scheme as in Chs. 3—4:

e First solve the complementary homogeneous problem: x’ = A(t)x. Of course, this is not
necessarily an easy problem. Assuming A is n-by-n, it involves building a fundamental set
of solutions {xi(t),...,x,(t)}. We have studied how to do this in the case that

(i) A(t) = Ais a constant matrix, and

(ii) the geometric multiplicity of any eigenvalue A of A is either equal to its algebraic
multiplicity, or is 1.

However one obtains this fundamental set of solutions, we write the homogeneous solution
asxp(t) = cixq(t) + - - + cuXn(t).

e Find a particular solution x,(t) of (1) using one of the methods we studied in Chs. 3—4:
the method of undetermined coefficients, or variation of parameters, adapted to the vector
setting.

e Obtain the general solution of (1) by putting these two together: x(t) = x;,(t) + x,(t).

As there is nothing very different here from Ch. 3, we will not probe these issues further. The
interested reader may consult Sections 7.7 and 7.9.

Variation of Parameters for 1%t order linear systems

In solving the problem (1), the first step is to find a fundamental set of solutions to the related
homogeneous problem. We assume such a set has been found, and have been assembled into a
fundamental matrix d(t), so that the general solution of the corresponding homogeneous problem
is x,(t) = d(t)c, where c is a vector of arbitrary constants (i.e., a constant vector). As before, the
underlying idea of variation of parameters is to search for a particular solution with a vector
function v(#) in place of the constant vector c:
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The derivative of this proposed x,(t)

4
dt

Inserting this derivative along with the proposed x,(t) into (1), we have

[cp(t)v(t)] — @' (t)v(t) + DV (H).

D' (H)v(t) + D)V () = A(H)D(t)v(t) + £(t),
which can be rearranged to say
DV (1) = A()D(H)v(t) — D (H)v(t) + (1) = [A(H)D(t) — D' ()] v(t) + () = £(t).

The crucial step uses the fact that A(t)®(t) — @’(t) = 0, which holds because all the columns of
D(t) satisfy x' = A(t)x. Working on the end result @ (t)v/(t) = £(), we get

V() = @Y HEE), or  v(t) = J(D_l(t)f(t) dt.

There is no doubt the fundamental matrix @(t) is nonsingular, and we can complete the Variation
of Parameters Formula for a particular solution:

xp(t) = D(t) Jcb—l (H)f(t) dt. )

This formula for x,, involving vector functions completely mirrors the scalar Variation of Parmaters
formula from Chapter 2. However, it might be advisable to find x, following these steps:

1. First solve @ (t)v' = f(t), most likely using Cramer’s Rule, for v/(). (In class, I called this v’
by the name u, instead.)

2. Integrate v/(t) to get v(t), taking the arbitrary constant of integration to be zero. Compute
the product x,(t) = D(t)v(t). (9 ,Lc‘ft

AE D I G

Example 7:

Find the general solution of

In matrix form x’ = Ax + f, the system is

,_/W'\ S
12 e | S
= [2 1]X+[e4t ) dv Ld

The eigenpairs (eigenvalue with corresponding basis eigenvector) of the matrix are

. _
-1, [ ] and 3, 1] ,
-1 _1

7
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v

NN o

Qﬁ-,i(\"‘w JSuidiggea fundamental matrix S

et ot . . et oot
D(t) = [—e‘t e with Wronskian U 2%,
The components v'l, v, of v/ = dv/dt, obtained using Cramer’s Rule, are
1 |24 & 1 1 | et 2e* 3
/o 5t ro_ = 2t
U= g | | =20 and o= oml T 2%
5 1 1 3 3
N B P . N R PR
v1(t) —fze dt 106, vy (t) Jzedt 26,
and
e=t et | (1/10)* 1 et 3, |t
H = D)) = _ 1 s 3
x() ) [—e‘t et (3/2)e! 10° |—et| T2° [
| (8/5)e*
| (@/5)e

Phase portraits for 2-by-2 systems

We consider here the linear homogeneous problem x’ = Ax where A = (a;;) is a (constant) 2-by-2
matrix. We will write the components of x as x and y.

In two dimensions, the phase portrait of a 18torder linear homogeneous system of DEs usually goes
hand in hand with the classification of equilibria, so the discussions are linked. An equilibrium
point, you will recall, is any state (or tuple of dependent variables) x = (x,y) at which the
dependent variables simultaneously have zero derivatives—that is, any point (x, y) which satisfies

(o) = () =2():

So, when det(A) # 0, the only solution to this equation (and hence the only equilibrium point) is
x = (0,0). As it is usually the case for most problems, we will assume, for now, that det(A) # 0.

Of course, this means the eigenvalues of A are nonzero.

We have discussed some of the most important classifications of the equilibrium at the origin,
along with their accompanying phase portraits. We catalog these here, along with mentioning

some new ones. In each case, I have used a phase portrait app for autonomous 18t

order systems
like the one used in class to obtain a direction field and phase portrait, and we identify the features

noted in the eigenpairs of the matrix which dictate the behavior we see in the phase portrait.
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1. Origin is a saddle point

Consider the system x’ = Ax where

()

The direction field and phase portrait is pictured
at right. Y A N N
Analyzing this matrix, we find it has eigenpairs Yo oo }') Lot \xf’"# 2 R A

'S
7 7=

w

eigenvalue basis eigenvector(s)
2 6,1)
-4 -1, 1)

yielding general solution

x(t) = c1e? (?) +cpe ¥ (21) .

The eigenvectors explain the straight lines through the origin. These lines are, in fact, four

-0.048193, 3.424 X

separate trajectories: one arising whenc; = 0, c; > 0; asecond whenc; = 0, ¢z < 0 (these two
tend toward the origin as t — oo because of the sign of the eigenvalue (—4)); a third when
c1 > 0,c2 = 0; a fourth when ¢; <0, ¢ = 0 (these two tend toward the origin as t — —0).

A saddle point occurs whenever the eigenvalues of the 2-by-2 matrix A are real and of
opposite sign. When you sketch a phase portrait, your drawing should include arrows on
trajectories indicating direction of flow for increasing time. Make sure you are able to identify
eight trajectories on the picture here, and know the appropriate orientation (arrow directions)
on all eight.

2. Origin is a node
The term node is applied to all situations in which both eigenvalues are real and of the same
sign. But there are several kinds of nodes.
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Node: Consider the system x' = Ax where X" = 2'x+2'y
y  =x-3%
£ R T VL VL VI N T VL A Y PR
-2 2 SN N NN N WY NN Ny d&»siﬁ
A: 3N N NN NN ) M\‘u\‘&\h\\ili{
* R T N e ) Al bl Y 3 ) 4 ¢ i
1 _3 2‘\4\;\\\\\\\.\45\2\‘\»\‘}4.-./.
L ST VI NN M Wouov e e
NN Y =
oW N v N T N Sy A e
This matrix has eigenpairs 1 \\‘ S R /4’ T
M N N \\\ N Y P 3/.FL:-§_<\_;
Yool Il P S G
eigenvalue basis eigenvector(s) T e TONe \\\ o
B R A I L S N S S NN
1 @1 T NI
'an:sq‘«kn\'«\\\'\'\ LN NN
-4 ('1,1) LA O L T T T O U AT T W N NN NN\
—377T'\\’(\ RORCRORNR NN RN R R RASELN
. . . L T T S | S S S T T N T L N NN ~
yielding general solution P IR NN NN N
-4 -3 -2 -1 0 1 2 3 4
1 -3.4217, 4 X
x(t) = cre”! + cpe ¥
Proper Node: Consider the system x' = Ax where X" = x
y =-y

-1 0
0 -1

A=

Obviously the eigenvalue (—1) has AM = 2. It is
easily shown that GM = 2, and a basis of eigenvectors Y

L A B R 1

is {(1,0), (0,1)}, yielding general solution

Vi

1 0 IR,

x(t) = cre™! +cpe! 1 DRI
TN ~

UM N o

~

WA
A
/

H/ﬁﬁ,_/;’, ./ Ok
n o T A » 3K % RN o
A ” 1 Y % [ NENE N N
FV )
A AN S RN AR TR SR S
Ly LY '
AARE a1 A A

'S

Improper/Degenerate Node: Consider the system

x' = Ax where

T 777 7777~
toror T RD R 7 I A 4
RN Y AR
A 2 1 ;,,//,,,f,/_.,
= ISRV LR/ g .
-1 4 ,//
The feature of A which may be used to identify a y SRS

degenerate node is that it has a real eigenvalue (here,
it is 3) with AM = 2, but GM = 1. In this instance
a basis eigenvector is v = (1,1), and one solution of

(A=3I)n = visn = (—1,0), yielding general solution

-2.3036, -3.936 X
1 -1 1 '
x(t) = c1e’ + cpe’t +t
1 1
For solution trajectories with c; = 0, we get two rays emanating from the origin along the
direction of the line parallel to the vector (1, 1). For those with ¢, # 0, notice that, as t — + o,

10
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the relative influence of the two vectors in the sum
(—=1,0) +t(1,1)

will be heavily tilted toward the eigenvector (1,1). This means that, for |¢| large, trajectories
should be more and more parallel to the vector (1,1) ast — +o0, but during some intermediate
range of t-values, it has to turn 180°.

. Origin is a center
Consider the system x' = Ax where

Az( )

Here, the eigenvalues are +3i, and to the eigenvalue 3i

1
2

-5
-1

there is a corresponding eigenvector (—5, —1 + 3i). This ¥
yields general soln

x(t) = 1 ( )—l—cz <

Clearly there is a periodic nature to these solutions, ex-

—5sin(3t)
—sin(3t) + 3 cos(3t)

—5cos(3t)
—cos(3t) — 3sin(3t)

-3.4795, -3.424

plaining the closed loop trajectories. To determine orien-

tation (direction of “flow” as t increases), take a test point, say, (1,0). At this point, we have
rate of change
X

) - 2)6) -6

showing that, when we are at the point (1,0), flow is upward to the right. Once you draw

/

1
2

-5
-1

1
0

1
2

/

an arrow to this effect, orientation along any trajectory is the same.

. Origin is a spiral point
Consider the system x’ = Ax where

)

This matrix has eigenvalue A = —1 + i with corre-

-5
-3

sponding eigenvector (5,2 — i), yielding general soln

5cost

x(t)

2cost + sint

5sint
2sint — cost

) )

If it weren’t for the presence of the factor ¢!, one

7

would expect another center—trajectories forming
closed loops. But, because of the exponential decay

-3.2675, -0.45867

11
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scaling factor, we have trajectories that spiral inward (note how you would add arrows to
indicate orientation) toward the origin.

Stability diagram

For 2-by-2 matrix A = (a;;), let us define

T = trace(A) = ay +ai,
a1 an

A = det(A) = = aq1dp2 — A12471.
a1 a

Notice that the characteristic polynomial of A, in this 2-by-2 case, is

det(A —Al) = = A2— (all + au)/\ + anaxp —anap = A% — 1A + A,

apn— A ap
a1 ap—A

which has roots (the eigenvalues of A)

1
A1,2 = * E T2 — 4A.

NI

Saddle points arise when are the two eigenvalues are nonzero real numbers of opposite sign, and
this occurs precisely when

V12 —4A > 1] < A <0.

Nodes arise when these eigenvalues are distinct, but of the same sign, and this occurs precisely
when the expression under the radical

0<1?—4A < ° < 0<A<1%/4

Proper and improper nodes arise when there is a repeated, nonzero eigenvalue, and this occurs
precisely when

1
7#0 and 2 —4A =0 = 0<A=ZT2.

Spiral points arise when eigenvalues are complex a + i with neither a nor g equal to 0; this occurs
precisely when

1
7#0 and 2 —4A <0 = O<ZTz<A.

We gather all this information into the stability diagram below. Note that we are observing the At-
plane here. An alternate version, one I found on the internet, which draws little characterization-
diagrams for the various names, appears further down. It uses g and p for A and 7, respectively.

12
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saddle points

non-isolated
fixed points
stars, degenerate nodes
P
/’x/ Unstable Nodes Degenerate @
Z, :
2]
‘é Unstable Unstable Nodes
E
2
3
3
T 1
Unstable Spirals /éiii} G
= q
N &
Stable Spirals
[
2
5
&
2
3
3 Degenerate
Stable| Lines
A -
?7»4
,#/ /f Stable Nodes Stable Nodes ©
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