
MATH 231 Lecture Notes 1st Order Linear Homogeneous Systems with Constant Coe↵s x1 “ Ax

The case when an eigenvalue has algebraic multiplicity ° geometric multiplicity

We know how to construct a fundamental set of solutions to the 1st order linear homogeneous
system x1 “ Ax with constant coe�cients in the case when each eigenvalue of A has geometric
multiplicity equal to its algebraic multiplicity. The problem, when some eigenvalue has geometric
multiplicity strictly less than its algebraic multiplicity is that there are not enough linearly inde-
pendent (L.I.) eigenvectors to go with that eigenvalue to fill out its portion of the fundamental set.
We investigate this situation next, beginning with a special case. Before doing so, we introduce a
couple new matrix-related concepts: the rank and nullity. For a given matrix A, rank pAq is the
number of linearly independent column vectors it has; nullity pAq is the di↵erence between the
number of columns in A and its rank. Here are some facts about the rank of a matrix.

Theorem 1: Suppose A is an m-by-n matrix with complex number entries.

1. rank pAq ` nullity pAq “ n.

2. Suppose R is an echelon form of A—i.e., A can be reduced to R by means of EROs.
Then rank pAq equals the number of pivot columns in R, and nullity pAq equals the
number of free columns in R.

3. The value of rank pAq cannot exceed minpm,nq.

4. The number of linearly independent solutions to Av “ 0 equals nullity pAq.

5. If m “ n (so A is square), then A is nonsingular if and only if rank pAq “ n (if and
only if nullity pAq “ 0).

6. If m “ n and � is an eigenvalue of A, then the geometric multiplicity of � equals
nullity pA ´ �Iq.

An n-by-n matrix for which rank pAq † n (that is, nullity pAq ° 0) is said to be rank deficient.
Note that the eigenvalues of A are precisely those complex numbers � for which pA ´ �Iq is rank
deficient.

Case: geometric multiplicity = 1, algebraic multiplicity = 2

Let us suppose that � is an eigenvalue of A whose geometric multiplicity (GM) is 1 while its
algebraic multiplicity (AM) is 2. Because GM = 1, we know the collection of eigenvectors corre-
sponding to � has 1 degree of freedom, so a basis for these eigenvectors consists of just one vector.
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(Said another way, nullity pA ´ �Iq “ 1.) Let us call this basis eigenvector v. Together, p�,vq give
us a solution x1ptq “ e�tv to x1 “ Ax, and we include it in the construction of a fundamental set of
solutions. Given both our experience solving higher-order linear DEs in Chs. 3-4 and the problem
from Apr. 6th ’s class, we suspect there is another linearly independent solution taking the form
xptq “ e�t⌘` te�tv. We plug this into the 1st order system:

x1 “ Ax becomes �e�t⌘` e�tv ` �te�tv “ Ape�t⌘` te�tvq
ñ �⌘` v ` �tv “ A⌘` tAv

ñ �v “ Av and �⌘` v “ A⌘

ñ pA ´ �Iqv “ 0 and pA ´ �Iq⌘ “ v.

The first of these equations indicates that, if a solution xptq of the form we proposed exists, then v is
an eigenvector. It is not obvious that the second equation has a solution but, under the conditions
of the scenario we are investigating, it does. (It has infinitely many, in fact, with GM = 1 degree
of freedom.) Taking one (representative) solution ⌘, the vector function x2ptq “ e�tp⌘ ` tvq solves
x1 “ Ax and is linearly independent from others obtained using eigenpairs, making up for the
deficiency in our fundamental set construction which occurred because � had GM = 1 and AM =
2.

Example 4:

Problem: Find the solution to x1 “ Ax, with A “
˜

7 1
´4 3

¸

, subject to xp0q “ p2,´5q. Draw

the phase portrait for this system.

Case: geometric multiplicity = 1, algebraic multiplicity ° 1

Again, we assume � is an eigenvalue of A with GM = 1 or, equivalently, that nullity pAq “ 1.
Let v be a corresponding eigenvector. As we handled the case where AM = 2 above, we assume
here that AM = k ° 2 so that, along with e�tv, we must find k ´ 1 additional solutions associated
somehow with � to be included in our construction of a fundamental set of solutions to x1 “ Ax.
As before, we look for a solution of the form xptq “ e�tp⌘ ` tvq, which requires that we solve
pA ´ �Iq⌘ “ v. Since nullity pA ´ �Iq “ 1, there is just one degree of freedom in the collection of
vectors ⌘ that solve this problem, which means this process can give us just one additional entry
for our fundamental set. The key is that we will need to take this process up k levels. At level 1,
we find a representative eigenvector v. At level 2, we solve for a vector ⌘p1q in Rn that satisfies
pA ´�Iq⌘ “ v. At level 3, with ⌘p1q already fixed, we solve for ⌘p2q, and so on. This is summarized
in the table below.
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Matrix Problem
Level to Be Solved Resulting Solution to x1 “ Ax

1 pA ´ �Iqv “ 0 e�tv

2 pA ´ �Iq⌘p1q “ v e�tp⌘p1q ` tvq

3 pA ´ �Iq⌘p2q “ ⌘p1q e�t
ˆ
⌘p2q ` t⌘p1q ` t2

2!
v

˙

4 pA ´ �Iq⌘p3q “ ⌘p2q e�t
ˆ
⌘p3q ` t⌘p2q ` t2

2!
⌘p1q ` t3

3!
v

˙

...
...

...

k pA ´ �Iq⌘pk´1q “ ⌘pk´2q e�t
ˆ
⌘pk´1q ` t⌘pk´2q ` ¨ ¨ ¨ ` tk´2

pk ´ 2q!
⌘p1q ` tk´1

pk ´ 1q!
v

˙

Example 5: After Exercise 17, Section 7.8

Problem: Find the general solution to x1 “ Ax when A “

¨

˚̋
1 1 1
2 1 ´1

´3 2 4

˛

‹‚.

A word about the other cases

We have been discussing cases in which A has an eigenvalue whose GM † AM. We have stuck
to instances in which GM = 1. There are numerous ways in which one might encounter 1 † GM
† AM, and these are more complicated. We will illustrate the new wrinkles that appear in such
cases with an example, and leave the rest as a topic of exploration in an advanced course in ODEs.

Example 6: After Exercise 18, Section 7.8

Problem: Find the general solution to x1 “ Ax when A “

¨

˚̋
5 ´3 ´2
8 ´5 ´4

´4 3 3

˛

‹‚.

1st Order Linear Systems: Loose Ends
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General linear (possibly nonhomogeneous) problems

The most general linear 1st order system of DEs takes the form

x1 “ Aptqx ` fptq. (1)

That is, the coe�cients of terms involving the components x1, . . . , xn of x may be time-dependent
(resulting in a matrix A “ Aptq which is time-dependent), and the problem under consideration
may not be homogeneous (resulting in a nonzero fptq term). While it is not the only possibly route
to a solution, it is possible to attack the system (1) using the same scheme as in Chs. 3–4:

• First solve the complementary homogeneous problem: x1 “ Aptqx. Of course, this is not
necessarily an easy problem. Assuming A is n-by-n, it involves building a fundamental set
of solutions tx1ptq, . . . , xnptqu. We have studied how to do this in the case that

(i) Aptq “ A is a constant matrix, and

(ii) the geometric multiplicity of any eigenvalue � of A is either equal to its algebraic
multiplicity, or is 1.

However one obtains this fundamental set of solutions, we write the homogeneous solution
as xhptq “ c1x1ptq ` ¨ ¨ ¨ ` cnxnptq.

• Find a particular solution xpptq of (1) using one of the methods we studied in Chs. 3–4:
the method of undetermined coe�cients, or variation of parameters, adapted to the vector
setting.

• Obtain the general solution of (1) by putting these two together: xptq “ xhptq ` xpptq.

As there is nothing very di↵erent here from Ch. 3, we will not probe these issues further. The
interested reader may consult Sections 7.7 and 7.9.

Variation of Parameters for 1st order linear systems

In solving the problem (1), the first step is to find a fundamental set of solutions to the related
homogeneous problem. We assume such a set has been found, and have been assembled into a
fundamental matrix�ptq, so that the general solution of the corresponding homogeneous problem
is xhptq “ �ptqc, where c is a vector of arbitrary constants (i.e., a constant vector). As before, the
underlying idea of variation of parameters is to search for a particular solution with a vector
function vptq in place of the constant vector c:

xpptq “ �ptqvptq.
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The derivative of this proposed xpptq
d
dt

”
�ptqvptq

ı
“ �1ptqvptq `�ptqv1ptq.

Inserting this derivative along with the proposed xpptq into (1), we have

�1ptqvptq `�ptqv1ptq “ Aptq�ptqvptq ` fptq,

which can be rearranged to say

�ptqv1ptq “ Aptq�ptqvptq ´�1ptqvptq ` fptq “ rAptq�ptq ´�1ptqs vptq ` fptq “ fptq.

The crucial step uses the fact that Aptq�ptq ´�1ptq “ 0, which holds because all the columns of
�ptq satisfy x1 “ Aptqx. Working on the end result�ptqv1ptq “ fptq,we get

v1ptq “ �´1ptqfptq, or vptq “
ª
�´1ptqfptq dt.

There is no doubt the fundamental matrix�ptq is nonsingular, and we can complete the Variation
of Parameters Formula for a particular solution:

xpptq “ �ptq
ª
�´1ptqfptq dt. (2)

This formula for xp involving vector functions completely mirrors the scalar Variation of Parmaters
formula from Chapter 2. However, it might be advisable to find xp following these steps:

1. First solve�ptqv1 “ fptq, most likely using Cramer’s Rule, for v1ptq. (In class, I called this v1

by the name u, instead.)

2. Integrate v1ptq to get vptq, taking the arbitrary constant of integration to be zero. Compute
the product xpptq “�ptqvptq.

Example 7:

Find the general solution of
x1 “ x ` 2y ` 2e4t

y1 “ 2x ` y ` e4t

In matrix form x1 “ Ax ` f, the system is

d
dt

x “
«

1 2
2 1

�

x `
«

2e4t

e4t

�

.

The eigenpairs (eigenvalue with corresponding basis eigenvector) of the matrix are

´1,

«
1

´1

�

and 3,

«
1
1

�

,
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yielding a fundamental matrix

�ptq “
«

e´t e3t

´e´t e3t

�

with Wronskian

������
e´t e3t

´e´t e3t

������ “ 2e2t.

The components v1
1, v1

2 of v1 “ dv{dt, obtained using Cramer’s Rule, are

v1
1 “ 1

2e2t

������
2e4t e3t

e4t e3t

������ “ 1
2

e5t, and v1
2 “ 1

2e2t

������
e´t 2e4t

´e´t e4t

������ “ 3
2

et,

so
v1ptq “

ª
1
2

e5t dt “ 1
10

e5t, v2ptq “
ª

3
2

et dt “ 3
2

et,

and

xpptq “ �ptqvptq “
«

e´t e3t

´e´t e3t

� «
p1{10qe5t

p3{2qet

�

“ 1
10

e5t

«
e´t

´e´t

�

` 3
2

et

«
e3t

e3t

�

“
«

p8{5qe4t

p7{5qe4t

�

.

Phase portraits for 2-by-2 systems

We consider here the linear homogeneous problem x1 “ Ax where A “ paijq is a (constant) 2-by-2
matrix. We will write the components of x as x and y.

In two dimensions, the phase portrait of a 1st order linear homogeneous system of DEs usually goes
hand in hand with the classification of equilibria, so the discussions are linked. An equilibrium
point, you will recall, is any state (or tuple of dependent variables) x “ px, yq at which the
dependent variables simultaneously have zero derivatives—that is, any point px, yq which satisfies

˜
0
0

¸

“
˜

x1

y1

¸

“ A

˜
x
y

¸

.

So, when detpAq , 0, the only solution to this equation (and hence the only equilibrium point) is
x “ p0, 0q. As it is usually the case for most problems, we will assume, for now, that detpAq , 0.
Of course, this means the eigenvalues of A are nonzero.

We have discussed some of the most important classifications of the equilibrium at the origin,
along with their accompanying phase portraits. We catalog these here, along with mentioning
some new ones. In each case, I have used a phase portrait app for autonomous 1st order systems
like the one used in class to obtain a direction field and phase portrait, and we identify the features
noted in the eigenpairs of the matrix which dictate the behavior we see in the phase portrait.
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1. Origin is a saddle point

Consider the system x1 “ Ax where

A “
˜

1 5
1 ´3

¸

.

The direction field and phase portrait is pictured
at right.
Analyzing this matrix, we find it has eigenpairs

eigenvalue basis eigenvector(s)
2 (5, 1)
-4 (-1, 1)

yielding general solution

xptq “ c1e2t

˜
5
1

¸

` c2e´4t

˜
´1
1

¸

.

The eigenvectors explain the straight lines through the origin. These lines are, in fact, four
separate trajectories: one arising when c1 “ 0, c2 ° 0; a second when c1 “ 0, c2 † 0 (these two
tend toward the origin as t Ñ 8 because of the sign of the eigenvalue p´4q); a third when
c1 ° 0, c2 “ 0; a fourth when c1 † 0, c2 “ 0 (these two tend toward the origin as t Ñ ´8).

A saddle point occurs whenever the eigenvalues of the 2-by-2 matrix A are real and of
opposite sign. When you sketch a phase portrait, your drawing should include arrows on
trajectories indicating direction of flow for increasing time. Make sure you are able to identify
eight trajectories on the picture here, and know the appropriate orientation (arrow directions)
on all eight.

2. Origin is a node
The term node is applied to all situations in which both eigenvalues are real and of the same
sign. But there are several kinds of nodes.
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Node: Consider the system x1 “ Ax where

A “
˜

´2 2
1 ´3

¸

.

This matrix has eigenpairs

eigenvalue basis eigenvector(s)
-1 (2, 1)
-4 (-1, 1)

yielding general solution

xptq “ c1e´t

˜
2
1

¸

` c2e´4t

˜
´1
1

¸

.

Proper Node: Consider the system x1 “ Ax where

A “
˜

´1 0
0 ´1

¸

.

Obviously the eigenvalue p´1q has AM = 2. It is
easily shown that GM= 2, and a basis of eigenvectors
is tp1, 0q, p0, 1qu, yielding general solution

xptq “ c1e´t

˜
1
0

¸

` c2e´t

˜
0
1

¸

.

Improper/Degenerate Node: Consider the system
x1 “ Ax where

A “
˜

2 1
´1 4

¸

.

The feature of A which may be used to identify a
degenerate node is that it has a real eigenvalue (here,
it is 3) with AM = 2, but GM = 1. In this instance
a basis eigenvector is v “ p1, 1q, and one solution of
pA´3Iq⌘ “ v is ⌘ “ p´1, 0q, yielding general solution

xptq “ c1e3t

˜
1
1

¸

` c2e3t

«˜
´1
0

¸

` t

˜
1
1

¸�

.

For solution trajectories with c2 “ 0, we get two rays emanating from the origin along the
direction of the line parallel to the vector p1, 1q. For those with c2 , 0, notice that, as t Ñ ˘8,
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the relative influence of the two vectors in the sum

p´1, 0q ` tp1, 1q

will be heavily tilted toward the eigenvector p1, 1q. This means that, for |t| large, trajectories
should be more and more parallel to the vector p1, 1q as t Ñ ˘8, but during some intermediate
range of t-values, it has to turn 180˝.

3. Origin is a center
Consider the system x1 “ Ax where

A “
˜

1 ´5
2 ´1

¸

.

Here, the eigenvalues are ˘3i, and to the eigenvalue 3i
there is a corresponding eigenvector p´5,´1 ` 3iq. This
yields general soln

xptq “ c1

˜
´5 cosp3tq

´ cosp3tq ´ 3 sinp3tq

¸

`c2

˜
´5 sinp3tq

´ sinp3tq ` 3 cosp3tq

¸

.

Clearly there is a periodic nature to these solutions, ex-
plaining the closed loop trajectories. To determine orien-
tation (direction of “flow” as t increases), take a test point, say, p1, 0q. At this point, we have
rate of change ˜

x1

y1

¸

“
˜

1 ´5
2 ´1

¸ ˜
1
0

¸

“
˜

1
2

¸

showing that, when we are at the point p1, 0q, flow is upward to the right. Once you draw
an arrow to this e↵ect, orientation along any trajectory is the same.

4. Origin is a spiral point
Consider the system x1 “ Ax where

A “
˜

1 ´5
1 ´3

¸

.

This matrix has eigenvalue � “ ´1 ` i with corre-
sponding eigenvector p5, 2 ´ iq, yielding general soln

xptq “ c1e´t

˜
5 cos t

2 cos t ` sin t

¸

`c2e´t

˜
5 sin t

2 sin t ´ cos t

¸

.

If it weren’t for the presence of the factor e´t, one
would expect another center—trajectories forming
closed loops. But, because of the exponential decay
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scaling factor, we have trajectories that spiral inward (note how you would add arrows to
indicate orientation) toward the origin.

Stability diagram

For 2-by-2 matrix A “ paijq, let us define

⌧ “ tracepAq “ a11 ` a12,

� “ detpAq “
������
a11 a12

a21 a22

������ “ a11a22 ´ a12a21.

Notice that the characteristic polynomial of A, in this 2-by-2 case, is

detpA ´ �Iq “
������
a11 ´ � a12

a21 a22 ´ �

������ “ �2 ´ pa11 ` a12q�` a11a22 ´ a21a12 “ �2 ´ ⌧�` �,

which has roots (the eigenvalues of A)

�1,2 “ ⌧
2

˘ 1
2

a
⌧2 ´ 4�.

Saddle points arise when are the two eigenvalues are nonzero real numbers of opposite sign, and
this occurs precisely when

a
⌧2 ´ 4� ° |⌧| ô � † 0.

Nodes arise when these eigenvalues are distinct, but of the same sign, and this occurs precisely
when the expression under the radical

0 † ⌧2 ´ 4� † ⌧2 ô 0 † � † ⌧2{4.

Proper and improper nodes arise when there is a repeated, nonzero eigenvalue, and this occurs
precisely when

⌧ , 0 and ⌧2 ´ 4� “ 0 ô 0 † � “ 1
4
⌧2.

Spiral points arise when eigenvalues are complex ↵` i�with neither ↵ nor � equal to 0; this occurs
precisely when

⌧ , 0 and ⌧2 ´ 4� † 0 ô 0 † 1
4
⌧2 † �.

We gather all this information into the stability diagram below. Note that we are observing the�⌧-
plane here. An alternate version, one I found on the internet, which draws little characterization-
diagrams for the various names, appears further down. It uses q and p for � and ⌧, respectively.
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