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2nd Order DE Models

We will look at two main models that are not only 2nd order, but have constant coe�cients. They
are the spring–mass assembly (which gets most of our time) and simple electric circuits.

Spring–mass assembly

Consider a mass suspended at the end of a spring, as shown at right.
If the natural length of the spring—i.e., without any load—is `, and our
object with mass m stretches the spring to a new length p``Lq then, in the
absence of motion, we have two forces in equilibrium: mg “ Fk. Here Fk

represents the restorative force of the spring, which has been established
experimentally under small displacements to have expression Fk “ kL,
where k ° 0 is an internal spring constant.
When this same assembly is in motion, we let uptq denote the di↵erence
in the actual length of the spring and the equilibrium length p` ` Lq.
[Note: We will take the downward direction as positive, so u ° 0 when
the string is stretched longer than p` ` Lq.] Newton’s 2nd Law now says

m
d2u
dt2 “ mg ` Fk ` Fr ` Fe “ mg ´ kpL ` uq ` Fr ` Fe “ ´ku ` Fr ` Fe,

where Fr represents damping force, and Fe encapsulates any external forces that drive the motion.
In a number of applications, Fr is reasonably approximated as being proportional to speed (and
opposite in direction to it), which gives Fr “ ´�du

dt , where � ° 0 is the constant of proportionality.
Thus, we have the 2nd order DE model for motion in this spring–mass assembly

m
d2u
dt2 ` �du

dt
` ku “ Fe. (1)

Undamped, unforced vibrations

We assume, for now, that our spring–mass assembly experiences no damping (so Fr “ 0). It is
interesting to see the implications of this, even if no such spring exists. If we assume, also, there
are no external forces (so Fe “ 0) in (1), we get the linear homogeneous DE

d2u
dt2 ` !2

0u “ 0,

with!0 “
a

k{m. (You may recall this same DE arose from linearizing the pendulum equation—i.e.,
by assuming sin✓ « ✓.) The general solution of this problem is

uptq “ c1 cosp!0tq ` c2 sinp!0tq,
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where the role of !0, called the natural frequency, is evident. The resulting periodic displacement
u describes what is called simple harmonic motion.

One may plot the solution (for various choices of c1, c2) in the tu-plane, of course. A less-familiar
way to plot solutions is parametrically in the uu1-plane (called the phase plane), and we do so
below (using Sage) for each combination of choices c1 “ ´3, 1 and c2 “ ´1, 4, with !0 “ 1 (fixed).

var(’t’)

u1(t) = -3*cos(t) - sin(t)

u2(t) = -3*cos(t) + 4*sin(t)

u3(t) = cos(t) - sin(t)

u4(t) = cos(t) + 4*sin(t)

p1 = parametric_plot((u1(t), diff(u1,t)), (t,-pi,pi), color=’red’)

p2 = parametric_plot((u2(t), diff(u2,t)), (t,-pi,pi), color=’blue’)

p3 = parametric_plot((u3(t), diff(u3,t)), (t,-pi,pi), color=’black’)

p4 = parametric_plot((u4(t), diff(u4,t)), (t,-pi,pi), color=’green’)

pall = p1 + p2 + p3 + p4

pall.show()

Forced, undamped vibrations

While external forces are not always periodic, we experience them enough (the motions of a child’s
legs to drive a swing on a playground, regular imperfections in the highway, etc.) to make them
worth a look. So, we take Fe “ F0 cosp!tq with F0 ° 0. When ! , !0, we know from homework
that the general solution of

d2u
dt2 ` !2

0u “ F0

m
cosp!tq (2)

is
uptq “ c1 cosp!0tq ` c2 sinp!0tq ` F0

mp!2
0 ´ !2q cosp!tq.

When the frequency of the forcing term! is a value close to the natural frequency!0, the amplitude
F0{pm|!2

0 ´!2|q of the final term can be very large. Still, none of the terms have an amplitude that
grows over time, so if the peak value which results from their combination is not so large that it
breaks the spring, vibrations continue indefinitely.

It is interesting to consider problem (2) along with ICs up0q “ 0, u1p0q “ 0 that place the spring–
mass assembly initially at rest. It may be shown, in this case (the details are given in our text on
p. 212 where, along with other, more familiar steps, the trigonometric identity

cos↵´ cos � “ ´2 sin
ˆ
↵´ �

2

˙
sin

ˆ
↵` �

2

˙

is used), that the solution is

uptq “
«

2F0

mp!2
0 ´ !2q sin

ˆp!0 ´ !qt
2

˙�

sin
ˆp!0 ` !qt

2

˙
.

3



MATH 231 Lecture Notes 2nd Order DE Models

When ! is similar in size to !0, this may be viewed as a rapidly oscillating function (frequency is
p!0 ` !q{2) with a slowly varying amplitude (the part in the square brackets, having frequency
p!0 ´!q{2). This is phenomenon is known variously as beats or amplitude modulation. Though
we have derived it under the impossible scenario of no damping, something very much like it
occurs physically when one tuning fork is used to excite another tuning fork with a slightly
di↵erent natural frequency, resulting in a note that seems to get louder and softer periodically.

We have a very di↵erent situation when, in (2), the frequency ! of the forcing term is equal to the
natural frequency !0. In this case, the solution of (2) (again a result from homework) is

uptq “ c1 cosp!0tq ` c2 sinp!0tq ` F0

2m!0
t sinp!0tq.

The amplitude F0t{|2m!0| in the final term grows with time, so that no spring can take the load
indefinitely. This is what we call resonance. As we shall see, this phenomenon cannot occur in
the presence of damping, making resonance (i.e., an amplitude that grows without bound) purely
a mental construct.

Damped vibrations

We first consider the homogeneous (unforced) problem

mu2 ` �u1 ` ku “ 0. (3)

Since the coe�cients m, � and k are all positive, the roots of our characteristic equation

mx2 ` �x ` k “ 0, given by r1,2 “ 1
2m

ˆ
´�˘

b
�2 ´ 4mk

˙
,

are

• real, with r1 , r2 and both r1,2 † 0, yielding general solution

uhptq “ c1er1t ` c2er2t.

This case, occuring when � ° 2
?

mk, is called overdamping.

• real, with r1 “ r2 “ ´�{p2mq, yielding general solution

uhptq “ c1e´�t ` c2te´�t.

This case, occurring when � “ 2
?

mk, is called critical damping.

• nonreal r1,2 “ ↵˘ i�, with ↵ “ ´�{p2mq and � “
a

4mk ´ �2{p2mq, yielding general solution

uhptq “ c1e´�t{p2mq cosp�tq ` c2e´�t{p2mq sinp�tq.

This case, occuring when � † 2
?

mk, is called underdamping.
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Regardless of which situation we have, solutions die o↵ exponentially as t Ñ 8.

The implications of this on the forced (nonhomogeneous) DE

mu2 ` �u1 ` ku “ F0 cosp!tq,

are two-fold:

1. The general solution will contain a transient part uhptq (coming from one of the three cases
above) and a steady-state part Uptq.

2. What we pose for a particular solution (a la the method of undetermined coe�cients) is just

upptq “ A cosp!tq ` B sinp!tq, (4)

a type of forced simple harmonic motion, with no potential for a growing amplitude over time.
One can solve for A, B to get

A “ F0pk ´ m!2q
pk ´ m!2q2 ` �2!2 and B “ F0�!

pk ´ m!2q2 ` �2!2 . (5)

It is common to see a function in the form (4) rewritten as

upptq “ R cosp!t ´ �q,

with
R “

a
A2 ` B2, cos � “ A

R
, and sin � “ B

R
. (6)

This may be justified using the trigonometric identity

cosp↵´ �q “ cos↵ cos �` sin↵ sin �,

as this means
R cosp!t ´ �q “ R cos � cosp!tq ` R sin � sinp!tq.

Using the relations (6) on our expressions (5), we obtain particular solution

upptq “ F0

�
cosp!t ´ �q,

with

� “
b

m2p!2
0 ´ !2q2 ` �2!2, cos � “

mp!2
0 ´ !2q
�

, sin � “ �!
�
, and !0 “

c
k
m
.

Recalling that this particular solution represents the steady-state of the motions of our spring–
mass assembly, we see that our assembly eventually settles into a delayed (and rescaled)
version of the forcing term F0 cosp!tq. While the amplitude F0{� cannot grow with time, one
can (in the underdamped case) tune the forcing frequency to the value ! “ !max, where

!2
max B !

2
0 ´ �2

2m2 “ !2
0

˜

1 ´ �2

2mk

¸

,
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which maximizes this amplitude. In the case of small damping (� ! 1) we get vibrations with
amplitude F0{� « F0{p�!0q that are far greater than the amplitude F0 of the forcing function.
Some people (the authors of our text among them) call this resonance as well, though it is a
somewhat di↵erent concept than what was meant by the term above.

Electric circuits

Consider the electric circuit pictured at right. Here L, R, C are constants
representing the inductance, resistance and capacitance, respectively. Let
Qptq represent the total charge on the capacitor at time t, and Eptq be the
impressed voltage. One may reason (see the text, pp. 201–202 for some details)
that the governing DE model is

L
d2Q
dt2 ` R

dQ
dt

` Q
C

“ Eptq.

The main point I wish to make is that the “features” we studied for a spring–
mass assembly have analogues in the case of a simple RLC series circuit.
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Set up 3-tank problem
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