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N
2nd Order DE Models

We will look at two main models that are not only 2" order, but have constant coefficients. They
are the spring—mass assembly (which gets most of our time) and simple electric circuits.

Spring-mass assembly

Consider a mass suspended at the end of a spring, as shown at right.
If the natural length of the spring—i.e., without any load—is ¢, and our
object with mass m stretches the spring to a new length (¢ +L) then, in the
absence of motion, we have two forces in equilibrium: mg = F. Here Fj,
represents the restorative force of the spring, which has been established
experimentally under small displacements to have expression Fy = kL,
where k > 0 is an internal spring constant.

When this same assembly is in motion, we let #(t) denote the difference
in the actual length of the spring and the equilibrium length (£ + L).

[Note: We will take the downward direction as positive, so u > 0 when
the string is stretched longer than (£ + L).] Newton’s 2" Law now says

d2
e

where F, represents damping force, and F, encapsulates any external forces that drive the motion.

= mg+Fc+F +F = mg—k(L+u)+F,+F, = —ku+F, +F,,

In a number of applications, F, is reasonably approximated as being proportional to speed (and

opposite in direction to it), which gives F, = _V%r where y > 0 is the constant of proportionality.
Thus, we have the 21d grder DE model for motion in this spring—mass assembly
20 20 d%u du - musS
s ¥ 5 F ’ — — +ku = F.. 1
o v e maE T va Tt T Jooge consted D
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We assume, for now, that our spring-mass assembly experiences no damping (so F, = 0). It is
interesting to see the implications of this, even if no such spring exists. If we assume, also, there
are no external forces (so F, = 0) in (1), we get the linear homogeneous DE

k I
T e S I UP P S AL A R e
i o) s

withwg = 4/k/m. (Youmay recall this same DE arose from linearizing the pendulum equation—i.e.,
by assuming sin 6 ~ 0.) The general solution of this problem is

u(t) = c1cos(wot) + ca sin(wot),
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where the role of wy, called the natural frequency, is evident. The resulting periodic displacement
u describes what is called simple harmonic motion.

One may plot the solution (for various choices of cj, ¢2) in the tu-plane, of course. A less-familiar
way to plot solutions is parametrically in the uu’-plane (called the phase plane), and we do so
below (using SAGE) for each combination of choices c; = —3,1 and c; = —1,4, with wg = 1 (fixed).

var('t’)

ul(t) = -3*cos(t) - sin(t)

u2(t) = -3*cos(t) + 4*sin(t)

u3(t) = cos(t) - sin(t)

ud(t) = cos(t) + 4*sin(t)

pl = parametric_plot((ul(t), diff(ul,t)), (t,-pi,pi), color="red’)

p2 parametric_plot((u2(t), diff(u2,t)), (t,-pi,pi), color="blue’)
p3 = parametric_plot((u3(t), diff(u3,t)), (t,-pi,pi), color=’'black’)
p4 = parametric_plot((u4(t), diff(u4,t)), (t,-pi,pi), color=’green’)

pall = pl + p2 + p3 + p4
pall.show()

Forced, undamped vibrations

While external forces are not always periodic, we experience them enough (the motions of a child’s
legs to drive a swing on a playground, regular imperfections in the highway, etc.) to make them
worth a look. So, we take F, = Fj cos(wt) with Fy > 0. When w # wg, we know from homework
that the general solution of

ol twpu = cos(wt) ()
is .
u(t) = c1cos(wot) + ¢z sin(wot) + 2—0 cos(wt).
m(wg — w?)

When the frequency of the forcing term w is a value close to the natural frequency wy, the amplitude
Fo/(m|wj — w?|) of the final term can be very large. Still, none of the terms have an amplitude that
grows over time, so if the peak value which results from their combination is not so large that it
breaks the spring, vibrations continue indefinitely.

It is interesting to consider problem (2) along with ICs #(0) = 0, #’(0) = 0 that place the spring—
mass assembly initially at rest. It may be shown, in this case (the details are given in our text on
p- 212 where, along with other, more familiar steps, the trigonometric identity

cosa —cosf = —2sin <aT—,B> sin <0Hz-5)

is used), that the solution is
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When w is similar in size to wy, this may be viewed as a rapidly oscillating function (frequency is
(wo + w)/2) with a slowly varying amplitude (the part in the square brackets, having frequency
(wp — w)/2). This is phenomenon is known variously as beats or amplitude modulation. Though
we have derived it under the impossible scenario of no damping, something very much like it
occurs physically when one tuning fork is used to excite another tuning fork with a slightly
different natural frequency, resulting in a note that seems to get louder and softer periodically.

We have a very different situation when, in (2), the frequency w of the forcing term is equal to the
natural frequency wy. In this case, the solution of (2) (again a result from homework) is

Fo
nao

u(t) = c1cos(wpt) + cp sin(wpt) + 5 tsin(wot).

The amplitude Fot/|2mawy| in the final term grows with time, so that no spring can take the load
indefinitely. This is what we call resonance. As we shall see, this phenomenon cannot occur in
the presence of damping, making resonance (i.e., an amplitude that grows without bound) purely
a mental construct.

Damped vibrations / \M\anﬁ [(——~—-?-——2] | —
1>0 (F= 0 oy %

We first consider the homogeneous (unforced) problem
mu"” +yu' +ku = 0. 3)

Since the coefficients m, y and k are all positive, the roots of our characteristic equation

1
2 = i = — (= 2 _
mx“+yx+k =0, givenby  rip = 5 ( yEay 4mk>,

SR O T o

1
{ “ il > D e real, with ; # r; and both 11, < 0, yielding general solution
—

—_—t

up(t) = et + e, —5 () as t2°
r~——~——

This case, occuring when y > 2+/mik, is called overdamping.

\{1 _ M\‘~ >0 e real, withry =n = yielding general solution

= = 2
up(t) = cre " 4 optet. —2 0 &3 T

This case, occurring when y = 2 v/mik, is called critical damping.

Tl “Ymi<) e nonreal ro = atif, witha = —y/(2m) and B = /4mk — y?/(2m), yielding general solution

up(t) = cre™@ cos(Bt) + cre™ /@™ sin(Bt). > O as t—>o0

This case, occuring when y < 2 v/ mik, is called underdamping.

4
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Regardless of which situation we have, solutions die off exponentially as t — c0.
The implications of this on the forced (nonhomogeneous) DE
mu” + yu' + ku = Fycos(wt),

are two-fold:

1. The general solution will contain a transient part u;,(t) (coming from one of the three cases

above) and a steady-state part U(t).
2. What we pose for a particular solution (a la the method of undetermined coefficients) is just
up(t) = Acos(wt) + Bsin(wt), 4)

a type of forced simple harmonic motion, with no potential for a growing amplitude over time.

One can solve for A, B to get

Fo(k — maw? F
A = otk — me) and B = U . (5)
(k — mw?)? + y2w? (k — mw?)? + y2w?
It is common to see a function in the form (4) rewritten as
uy(t) = Rcos(wt —0),
with ’ B
R = /A2 + B?, cosd = % and sind = R (6)
This may be justified using the trigonometric identity
cos(a — ) = cosacosf + sinasinf,
as this means
Rcos(wt —6) = Rcosocos(wt) + Rsin 0 sin(wt).
Using the relations (6) on our expressions (5), we obtain particular solution
F
up(t) = XO cos(wt — ),
with
A= \/mz(a)2 — w?)?2 +92w?, cosd = M sin6 = X2 and wp = q/k
- 0 V 7 - A ’ - A 7 0= m'

Recalling that this particular solution represents the steady-state of the motions of our spring—
mass assembly, we see that our assembly eventually settles into a delayed (and rescaled)
version of the forcing term Fy cos(wt). While the amplitude Fy/A cannot grow with time, one
can (in the underdamped case) tune the forcing frequency to the value ® = wmax, where

2 2
2 e 2 Yy 9 )4
Wax = Wy — o wj (1 — _ka> ,
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which maximizes this amplitude. In the case of small damping (y « 1) we get vibrations with
amplitude Fo/A ~ Fy/(ywo) that are far greater than the amplitude Fy of the forcing function.
Some people (the authors of our text among them) call this resonance as well, though it is a
somewhat different concept than what was meant by the term above.

Electric circuits

Consider the electric circuit pictured at right. Here L, R, C are constants
representing the inductance, resistance and capacitance, respectively. Let
Q(t) represent the total charge on the capacitor at time ¢, and E(t) be the
impressed voltage. One may reason (see the text, pp. 201-202 for some details) R
that the governing DE model is
2 Vv <t L

L% + RZ—? + % = E(t).

I
H
The main point I wish to make is that the “features” we studied for a spring— :|' C

mass assembly have analogues in the case of a simple RLC series circuit.




