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Linear Nonhomogeneous DEs

We return now to the study of DEs of the form Lrys “ g, where

L :“ dn

dtn ` p1ptq dn´1

dtn´1
` ` ¨ ¨ ¨ ` pn´1ptq d

dt
` pnptq, (1)

with gptq , 0. Earlier it was said that the paradigm we follow for solving such problems is

• Solve (i.e., find the general solution for) the homogeneous version of the problem. We will

denote this complementary solution by yhptq (or, if I slip up and call it ycptq sometimes, know

that I am referring to the same thing).

• Then use some means, perhaps simply a good guess, to find a single (particular) solution

ypptq of the full/original problem, and put the two answers together to get a general solution

yptq “ yhptq ` ypptq.

It is a general solution because all solutions of Lrys “ g take this form.

While it is often di�cult to find yh, the general solution of Lrys “ 0, we have a pretty good idea

how to find it when the operator L has constant coe�cients. The new issue is determining the

single solution ypptq of the original (nonhomogeneous) problem.

We will investigate two methods for finding a particular solution ypptq. The first could be called

making an educated guess, but instead is called the method of undetermined coe�cients. Its use

is highly dependent on the form of the inhomogeneity gptq. The other method is more analytical,

requiring less in the way of good “intuition”, but requires more in the way of technical calculations;

it is called variation of parameters.
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Undetermined coe�cients

Your guesses should be tailored to the form of gptq. Note that, by the linearity of the operator L, if

gptq “ g1ptq ` g2ptq ` ¨ ¨ ¨ ` gkptq, then the search for a particular solution ypptq of

Lrysptq “ gptq

may be broken into the subproblems of finding a particular solution Yjptq of

Lrysptq “ gjptq, for j “ 1, . . . , k.

That is, if we find Y1 so that LrY1s “ g1, Y2 so that LrY2s “ g2, etc., then ypptq “ Y1ptq ` Y2ptq `
¨ ¨ ¨ ` Ykptq satisfies Lryps “ g “ g1 ` ¨ ¨ ¨ ` gk.

It may well be that your intuition into di↵erentiation (and DEs) is well enough attuned that you

require little or no guidance on what kinds of guesses to make for a particular solution. This table,

however, (mostly) lifted from p. 181 in the text, o↵ers such guidance.

Form of gjptq Form of particular soln Yjptq
Pnptq “ a0tn ` a1tn´1 ` ¨ ¨ ¨ ` an tspA0tn ` A1tn´1 ` ¨ ¨ ¨ ` Anq
Pnptqe↵t tspA0tn ` A1tn´1 ` ¨ ¨ ¨ ` Anqe↵t

Pnptqe↵t
sinp�tq or Pnptqe↵t

cosp�tq tsrpA0tn ` A1tn´1 ` ¨ ¨ ¨ ` Anqe↵t
cosp�tq

`pB0tn ` B1tn´1 ` ¨ ¨ ¨ ` Bnqe↵t
sinp�tqs

a form not in this list no suggestions

The s that appears in the particular solution Yjptq is the smallest nonnegative integer such that no

term in Yjptq is also found in the complementary solution yhptq.

Example 1:

Find particular solutions for

1. y2 ` 9y “ 27t2 ´ 18t ` 51

2. y2 ` 9y “ p´9{2qe3t

3. y2 ` 9y “ 27t2 ´ 18t ` 51 ´ 2e3t

4. y2 ´ 10y1 ` 9y “ 4et

5. y2 ´ 9y “ e3t

6. y2 ´ 9y “ te3t

7. y2 ´ 9y “ e3t
sin t

8. y2 ´ 2y1 ` 2y “ et
sin t
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9. y2 ´ 2y1 ` y “ et

If you are solving an IVP, you must wait until you have the general solution to the full problem yhptq`ypptq
before you apply the ICs.

Example 2: A nonhomogeneous linear IVP

Problem: Find the solution of the IVP

y2 ´ 2y1 ` y “ et, yp0q “ 1, y1p0q “ ´1.
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