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MATH 231 Lecture Notes Linear Nonhomogeneous DEs

Undetermined coe�cients

Your guesses should be tailored to the form of gptq. Note that, by the linearity of the operator L, if

gptq “ g1ptq ` g2ptq ` ¨ ¨ ¨ ` gkptq, then the search for a particular solution ypptq of

Lrysptq “ gptq

may be broken into the subproblems of finding a particular solution Yjptq of

Lrysptq “ gjptq, for j “ 1, . . . , k.

That is, if we find Y1 so that LrY1s “ g1, Y2 so that LrY2s “ g2, etc., then ypptq “ Y1ptq ` Y2ptq `
¨ ¨ ¨ ` Ykptq satisfies Lryps “ g “ g1 ` ¨ ¨ ¨ ` gk.

It may well be that your intuition into di↵erentiation (and DEs) is well enough attuned that you

require little or no guidance on what kinds of guesses to make for a particular solution. This table,

however, (mostly) lifted from p. 181 in the text, o↵ers such guidance.

Form of gjptq Form of particular soln Yjptq
Pnptq “ a0tn ` a1tn´1 ` ¨ ¨ ¨ ` an tspA0tn ` A1tn´1 ` ¨ ¨ ¨ ` Anq
Pnptqe↵t tspA0tn ` A1tn´1 ` ¨ ¨ ¨ ` Anqe↵t

Pnptqe↵t
sinp�tq or Pnptqe↵t

cosp�tq tsrpA0tn ` A1tn´1 ` ¨ ¨ ¨ ` Anqe↵t
cosp�tq

`pB0tn ` B1tn´1 ` ¨ ¨ ¨ ` Bnqe↵t
sinp�tqs

a form not in this list no suggestions

The s that appears in the particular solution Yjptq is the smallest nonnegative integer such that no

term in Yjptq is also found in the complementary solution yhptq.

Example 1:

Find particular solutions for

1. y2 ` 9y “ 27t2 ´ 18t ` 51

2. y2 ` 9y “ p´9{2qe3t

3. y2 ` 9y “ 27t2 ´ 18t ` 51 ´ 2e3t

4. y2 ´ 10y1 ` 9y “ 4et

5. y2 ´ 9y “ e3t

6. y2 ´ 9y “ te3t

7. y2 ´ 9y “ e3t
sin t

8. y2 ´ 2y1 ` 2y “ et
sin t

3
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9. y2 ´ 2y1 ` y “ et

If you are solving an IVP, you must wait until you have the general solution to the full problem yhptq`ypptq
before you apply the ICs.

Example 2: A nonhomogeneous linear IVP

Problem: Find the solution of the IVP

y2 ´ 2y1 ` y “ et, yp0q “ 1, y1p0q “ ´1.

4

see OmdypolyKexp
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