s
y' +9y = (—=9/2)e% lﬁq«.\mwl ' 27\ —ochw \T‘Y\A}M{'
3t
Xj(ﬂ =\~ %Q

%ﬂhu\d so ln

() = ¢ u%(%t\ ¥ C, Q'w\(%f\
(ﬂh ‘

(3t) sl £) , )} .
@(a = o ’ ]%({’)\ - 36\95(5'{') — %S‘lu(g.k) = 3
i enfsh)  Beosl]
) Q s?h(ﬂyt) Cos(3t) 0
‘Q?M - A ) & “’ét Zeos(3t) M«/ u \&LLE)S 3 () '01 3t’ Jt
J&(’@(ﬂ} Lt B

\)

|
g‘}(ms %Qgtmk(st}J’C + ”}L[Hé 8 “%étm st\Jt

2 3¢t
S s (oY) S étSlv\[%t\ AA 3 Sin(3¢] Sé ws(3t] It
2

Solw

\:\\m({\ {/\me 7L WS (at\ *c, s (3F |



3t

£ 2 asler) S & enlst) IF T % NN S@ s (3t) I2

2



MATH 231 Lecture Notes Linear Nonhomogeneous DEs

Undetermined coefficients

Your guesses should be tailored to the form of g(¢). Note that, by the linearity of the operator L, if
g(t) = g1(t) + g2(t) + - - - + gk(t), then the search for a particular solution y,(t) of

Lly](t) = gj(t), for j=1,...,k

That is, if we find Y7 so that L[Y1] = g1, Y2 so that L[Y>] = &, etc., then y,(t) = Y1(t) + Ya(t) +
-+ Yi(t) satisfies L[y,] = g = g1 + - + S

It may well be that your intuition into differentiation (and DEs) is well enough attuned that you
require little or no guidance on what kinds of guesses to make for a particular solution. This table,
however, (mostly) lifted from p. 181 in the text, offers such guidance.

‘\‘Q‘I\\\gu\(,%_ ?U‘f\
Form of g;(¢ Form of particular soln Y;(t
8j P j
‘\\A'f\dwu:"-l-—§ Py(t) = aot” +mt" - +a, B(Apt" + At .+ Ay)
( BL”L \ = Pul B(Aot" + A"l 4+ Ay)et
P2 s )e sm(ﬁt) or Py(t)e* cos(Bt) B[(Aot" + A1t" L + -+ + Ay)e™ cos(Bt)
("’\‘}\ °"(7\ +(Bot" + Byt"" 1 4 - + By)e* sin(Bt)]
QAN
gcpg‘ a form not in this list no suggestions

The s that appears in the particular solution Y/(t) is the smallest nonnegative integer such that no
term in Y/(t) is also found in the complementary solution yj, ().

Example 1:

Find particular solutions for

1. y" + 9y = 27t> — 18t + 51 i ka“ +ﬁ = Z?iZﬂW S | i’@
2.y +9y = (-9/2)e! ¢ “
3. y" +9y =272 — 18t + 51 — 2¢%

4.y — 10y + 9y = 4e!

5.y —9y = ¢t

6. vy —9y =

7. ¥ — 9y = lsint

8. y" — 2y + 2y = e'sint

3t
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9.y -2y +y=c¢

If you are solving an IVP, you must wait until you have the general solution to the full problem yy,(t)+y, (t)
before you apply the ICs.

Example 2: A nonhomogeneous linear IVP
Problem: Find the solution of the IVP

y' =2y +y=¢, y(0) =1, y(0)=-1.
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