Math 251, Mon 30-Aug-2021 -- Mon 30-Aug-2021 Discrete Mathematics Fall 2020

Monday, August 30th 2021

Wk 1, Mo Topic:: Propositions Read:: Rosen 1.1 HW:: PS01 due Mon.

Propositions

Identify those statements which are propositions (P), and those which are not (N).

- 1. L The house at 351 Riverside is burning.
- 2. N 2x + 5 = 11.
- 3. ¹/₂ The cat is sleeping and the toddler is reaching for her tail.
- 4. \underline{N} Put that down!
- 5. L Parking on the south side of the street is allowed only on even-numbered dates.
- 6. N This sentence is ##e. not true.

Compound Propositions

are propositions. Propositions *p* and *q* seem more *atomic* than Proposition *r*; indeed, *r* is built out of these simpler ones, and is equivalent to *p* OR *q*. The making of a **compound proposition** out of two simpler ones joined by the word OR is called a **disjunction**.

ok is a logical operator. There are others:				Er "order of operations,
Name	Keyword	Symbol	Priority	. 1 before 2 before
negation	NOT	_	1	the some priority live
disjunction	(R)	v 🏶	2	parentheses these rules
conjunction	AND	Λ	2	
	NAND?			
	NOR?			
exclusive or	XOR	\oplus		
conditional	IF THEN	\rightarrow	3	
biconditional	IF AND ONLY IF	\leftrightarrow	3	

The OR is a logical operator. There are others:

Truth tables

p a F J F J T J T J	$ \begin{array}{c ccc} 7 & p \lor q \\ F & F \\ T & T \\ F & T \\ T & T \\ \end{array} $	v = or (disjunction)
p a F 1 F 1 T 1 T 1	7 ρ Λ η F F F F F F F F T T	n = and (conjuction)
p d F I F T T I T T	$\begin{array}{c c} 7 & p \rightarrow q \\ F & T \\ T & T \\ F & F \\ F & F \\ T & T \\ \end{array}$	$p \rightarrow q$ read in English (impraction, conditional) "primplies q" "pris sufficient for q" "q unless ¬p" "q if p" "q is necessary for p" "if p then q" " p only if q"
p a F I F T T I T T	P Θ η F F Γ T F T F T F T F T	(exclusive or) XOR $\begin{array}{c} P & q & q \xrightarrow{\rightarrow} p \\ F & F & T \\ F & T & F \\ T & F & T \\ T & T & T \\ \end{array}$ T to that for $p \xrightarrow{\rightarrow} q$
p a F 1 F 1 T 1 T 1	7 p ↔ q F T b F F F F F F T T	(biconditional) programme as ~ (p@g) ``logically equivalent''

Translating to symbols

Define propositional variables p, q, (r, ...) and rewrite p: Jenn is healthy g: Jenn is wealthy r: Jenn is wise

1. Jenn is healthy, wealthy, but not wise.

- 2. John is neither healthy, wealthy, nor wise.
- 3. In order to rain, it must be cloudy.
- 4. I eat only when I am hungry.
- 5. It is not true that I am old and gray.