Math 251, Mon 30-Aug-2021 -- Mon 30-Aug-2021
Discrete Mathematics
Fall 2020

Monday, August 30th 2021

Wk 1, Mo
Topic: : Propositions
Read:: Rosen 1.1
HW: PSO1 due Mon.

Propositions

Identify those statements which are propositions (P), and those which are not (N).

1. \mathcal{P} The house at 351 Riverside is burning.
2. $\mathbb{N} 2 x+5=11$.
3. P The cat is sleeping and the toddler is reaching for her tail.
4. N Put that down!
5. \mathcal{P} Parking on the south side of the street is allowed only on even-numbered dates.
6. N This sentence is not true.

Compound Propositions

are propositions. Propositions p and q seem more atomic than Proposition r; indeed, r is built out of these simpler ones, and is equivalent to $p \mathrm{OR} q$. The making of a compound proposition out of two simpler ones joined by the word $O R$ is called a disjunction.

The OR is a logical operator. There are others:

Name	Keyword	Symbol	Priority
negation	NOT	\neg	1
disjunction	(R)	\checkmark	2
conjunction	AND	\wedge	2
	NAND?		
	NOR?		
exclusive or	XOR	\oplus	
conditional	IF . . THEN . . .	\rightarrow	3
biconditional	IF AND ONLY IF	\leftrightarrow	3

Truth tables

p	q	$p \vee q$
F	F	F
F	T	T
T	F	T
T	T	T

$$
v=\text { or (disjunction) }
$$

p	q	$p \wedge q$
F	F	F
F	T	F
T	F	F
T	T	T

$$
\Lambda=\text { and }(\text { conjuction })
$$

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

$p \rightarrow q$ read in English (implication, conditional)

$$
\begin{aligned}
& \text { "p implies } q \text { " "p is sufficient for } q \text { " } \\
& \text { "q if } p \text { " "q is necessary for } p \text { " } \\
& \text { if } p \text { then } q \text { " } 7 p \text { " } p \text { only if } q \text { " }
\end{aligned}
$$

p	q	$p \oplus q$
F	F	F
F	T	T
T	F	T
T	T	F

(exclusive or) $X O R$

$$
\left.\begin{array}{lll}
f & q & q \rightarrow p \\
F & F & T \\
F & T & F \\
T & F & T \\
T & T & T
\end{array}\right\} \begin{aligned}
& \text { Truth table for } \\
& q \rightarrow p \text { follows } \\
& \text { from that for } p \rightarrow q
\end{aligned}
$$

p	q	$p \leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

(biconditional)

$$
p \leftrightarrow q \text { same as } \neg(p \oplus q)
$$

Translating to symbols

Define propositional variables $p, q,(r, \ldots)$ and rewrite

1. Jenn is healthy, wealthy, but not wise.

$$
p \wedge q \wedge \neg r
$$

2. John is neither healthy, wealthy, nor wise.
3. In order to rain, it must be cloudy.
4. I eat only when I am hungry.
5. It is not true that I am old and gray.

