Math 251, Wed 1-Sep-2021 -- Wed 1-Sep-2021 Discrete Mathematics Fall 2020

Wednesday, September 1st 2021

Wk 1, We
Topic:: Propositional logic
Note[[Worksheet
Read:: Rosen 1.1-1.2
HW((WW Propositions due Tues.

To discuss:- satisfiability, knights & knaves problemsA knight always tells the truth

A knave always telts the trueh (ies

Example:

- 1. Person A says B is a knight. Person B says A is a knave.
- 2. Person A says B is a knight. Person B says "we two are of opposite types."

- related conditions to p -> q: inverse, converse, contrapositive
 example: p: it rains, q: it pours
 - different ways to say, in English, $p \rightarrow q$ and variants
- tautology, logical equivalence
- logical equivalence

Warmup

Suppose we have atoms

p: You may take MATH 251. *q*: You may take MATH 171.

How does one translate into English

- 1. $p \lor q$?
- 2. $p \oplus q$?

Variants of conditional statements

Suppose we have atoms

p: It rains. *q*: It pours. Give several English translations of $q \rightarrow p$. If it pours, then it values. Politing is sufficient for raining. Raining is necessary for poursay. Also of the converse $p \rightarrow q$

Also of the contrapositive $\neg p \rightarrow \neg q$

Tautologies and contradictions

A compound proposition formed from propositional variables p, q, etc. which is True regardless of the values of these variables, is called a **tautology**. If the negation of a compound proposition is a tautology, then the proposition itself is called a **contradiction**.

A very simple example of a tautology is ; $\rho \vee \neg \rho$ A very simple example of a contradiction is ; $\rho \wedge \neg \rho$

Returning to biconditionals

 $(p \rightarrow q) \bullet (q \rightarrow p)$ $p \rightarrow q$ $q \rightarrow p$ q $p \leftrightarrow q$ q р р F F Т F F Т Т Т Т F F F Т F F Т F F T Т Т F F F Т T Т Т Т Т Т Т p <--> ° 1 Similarly, • compare truth of $p \rightarrow q$ with that of $\neg p \lor q$ 70 Va р P Contraction q р q F F F F T Τ Т F Т F Т Т Ч Т F Т F F Т F F F Т Т Т Т Т T • compare truth of $(p \lor q)$ with that of $\neg p \land \neg q$ р q р q -¬ 9 2 1 9 b F F F F - 6 T Т F F Т F Т F F T F F Т F Т F F F Т Т Т F Т $\neg (p \lor q) \equiv$ DeMorgen's Law)

Recall $p \leftrightarrow q$ has truth table as give at left. Fill in the truth values missing for the table on the right.

• compare truth of $p \to q$ with that of $\neg q \to \neg p$ (contrary situal)						
p q	10 -> 10	p	q	29	¬ρ	~g ~~p
F F	Trk	F	F	4	Ţ	0 T
FT	T	F	Т	F	Ť	Ť
TF	F	Т	F	T	F	F
TT	T	Т	Т	F	F	T
			I	1		I

Logical equivalence $P \equiv Q$ precisely when $P \Leftrightarrow Q$ $\overline{S} = A$ trutology We say two compound propositions P, Q are logically equivalent, written as $P \equiv Q$, , pecisely in the case that $P \leftrightarrow Q$ is a tautology.

From our work above, we have demonstrated three logical equivalences:

Some other logical equivalences (see Tables 6–8, pp. 27–28 for a more complete list):

- DeMorgan's Laws: $\neg(p \lor q) \equiv \neg p \land \neg q$
 - $\neg (p \land q) \equiv \neg p \lor \neg q$
- Identity Laws: $n \wedge T \equiv n$

$$p \land T \equiv p$$
$$p \lor F \equiv p$$

- Associative Laws:
 - $(p \lor q) \lor r \equiv p \lor (q \lor r)$
- $(p \land q) \land r \equiv p \land (q \land r)$ • Commutative Laws:
 - $p \wedge a \equiv a \wedge p$

$$p \lor q \equiv q \lor p$$

• Distributive Laws: $p \land (q \lor r) \equiv (p \land a) \lor (p \land r)$

$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Try simplifying the logical expression:

$$(p \land q) \lor (p \land \neg q) \equiv p \land (q \lor \neg q) \equiv p \land T \equiv p$$