Math 251, Wed 8-Sep-2021 -- Wed 8-Sep-2021 Discrete Mathematics Fall 2021

Wednesday, September 08th 2021

Wk 2, We

Topic:: Predicate and quantifiers

Read:: Rosen 1.4

HW((WW PredicatesAndQuantifiers due Tues.

HW:: Quiz Ch. 1 ends Mon.

Administrative:

- take attendance
- mention quiz

Disjunctive Normal Form

A compound proposition is in **disjunctive normal form** (DNF) if

- negations occur only on the atomic propositions.
- conjunctions occur only on inputs containing no disjunctions.
- there are no operations besides negation, conjunction and disjunction.

Several (tauto)logical equivalences can be used to re-express compound propositions in DNF.

- *p* → *q* ≡ ¬*p* ∨ *q*, to eliminate implications.
 Note how this provides direction for removing biconditionals, too.
- $p \oplus q \equiv (p \lor q) \land (\neg p \lor \neg q)$, to eliminate EXCLUSIVE ORs.
- $\neg(p \lor q) \equiv \neg p \land \neg q$, and $\neg(p \land q) \equiv \neg p \lor \neg q$, to move negation inside of conjunction/disjunction.

Exercise: Put the compound proposition $(p \rightarrow (q \land r)) \lor \neg (p \lor \neg (r \lor s))$ into DNF. **Answer**: $(\neg p \lor (q \land r)) \lor ((\neg p \land r) \lor (\neg p \land s)).$

Conclusion: The three operators: \neg , \land , and \lor are **functionally complete**.

Predicates

A **predicate**, or **propositional function**, is a statement involving at least one variable such that, when all variables are either

- assigned a value, or
- **bound** by a quantifier,

the result is a proposition. The **domain**, or **universe of discourse**, for each variable must be clear.

Examples

• *P*(*x*): "*x* is a city in Michigan" with domain: place names.

• C(x, y): " $y = x^2 - 1$ "

domain: coordinate pairs (x, y) where both x, y are real numbers

$$C(1, 0)$$
 is true

• *A*(*x*, *y*): "The word *x* contains the letter *y*" domain: (*x*, *y*) consists of a word *x* and a letter *y*

Quantifiers. We indicate the

- **universal quantifier**: the symbol ∀ is read aloud as "for all" or "for every."
- existential quantifier: the symbol ∃ is read aloud as "there exists" or "some."
- **uniqueness quantifier**: the symbol ∃! is read aloud as "there exists a unique" or "there is precisely one."

Examples:

- P(x): "x is mortal" domain: human beings C.S. Lewis says F translate ∀x P(x) All human beings are mortal.
 If D is the set of numbers D = {1,2,3,4,5}, is this statement true?
- 2. If D is the set of numbers $D = \{1, 2, 3, 4, 5\}$, is this statement true? $\forall x \in D \ (x^2 \ge x)$ evaluates I
- 3. If x, y are from the domain \mathbb{R} , is the statement true? $\forall x \forall y \ (xy = yx)$ evaluates T

- 4. Say the domain for *x* is all real numbers. Translate
- "There is an x in IR satisfying $x^2 = 2$." $\exists x \ (x^2 = 2)$ True
- 5. Translate $\forall x < 0 \ (x^2 > 2)$
- 6. Interpret the statement: $\forall x((x \neq 0) \rightarrow \exists ! y(xy = 1))$
- 7. Say the domains for a_0, a_1, a_2, a_3, x are \mathbb{R} . Interpret
- $\forall a_1 \forall a_2 \forall a_3 ((a_0 \neq 0) \rightarrow \exists x (a_0 x^3 + a_1 x^2 + a_2 x + a_3 = 0)).$
 - 8. Interpret $\exists ! x(x \text{ is omniscient, omnipresent and omnipotent})$

Notes:

- The uniqueness quantifier is convenient, but extraneous.
- Quantifiers take precedence over logical operators. Thus

 $\forall x P(x) \land Q(x)$ means $(\forall x P(x)) \land Q(x),$ not $\forall x(P(x) \land Q(x)).$

The latter is logically equivalent to $\forall x P(x) \land \forall x Q(x)$.

- A variable in a predicate that has no value or quantifier is free.
- **Negating quantifiers**. The negation of $\forall x P(x)$ is Jx ~P(x) The negation of $\exists x P(x)$ is A

$$(x \neg P(x))$$

Practice

Websites:

http://scofield.site/courses/m251/worksheets/sWars.txt

https://www.tutorialspoint.com/execute_prolog_online.php

- 1. Write queries for
 - (a) whether luke is a child of leia.
 - (b) all children of leia.
 - (c) all sons of leia.
 - (d) all uncles of jacen.
 - (e) all grandchildren of anakin
 - (f) all names of "force-sensitive" characters (whether sith or jedi)
 - (g) all names of characters who are both sith and jedi
- 2. Write rules for
 - (a) mother(*X*), so that the mother of *X* is sought/found
 - (b) nephew(X)
 - (c) isForceSensitive(*X*)
 - (d) isForceSensitive(X)
 - (e) grandfather(X)
- 3. Add information to the knowledge base so that there is a person named owen who appears in response to the query uncle(luke).