Math 251, Wed 8-Sep-2021 -- Wed 8-Sep-2021
Discrete Mathematics
Fall 2021

Wednesday, September 08th 2021

Wk 2, We
Topic:: Predicate and quantifiers
Read:: Rosen 1.4
HW(C WW PredicatesAndQuantifiers due Tues.
HW: : Quiz Ch. 1 ends Mon.

Administrative:

- take attendance
- mention quiz

Disjunctive Normal Form

A compound proposition is in disjunctive normal form (DNF) if

- negations occur only on the atomic propositions.
- conjunctions occur only on inputs containing no disjunctions.
- there are no operations besides negation, conjunction and disjunction.

Several (tauto)logical equivalences can be used to re-express compound propositions in DNF.

- $p \rightarrow q \equiv \neg p \vee q$, to eliminate implications.

Note how this provides direction for removing biconditionals, too.

- $p \oplus q \equiv(p \vee q) \wedge(\neg p \vee \neg q)$, to eliminate EXCLUSIVE ORs.
- $\neg(p \vee q) \equiv \neg p \wedge \neg q$, and $\neg(p \wedge q) \equiv \neg p \vee \neg q$, to move negation inside of conjunction/disjunction.

- $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$, to move a conjunction past a disjunction.

Exercise: Put the compound proposition $(p \rightarrow(q \wedge r)) \vee \neg(p \vee \neg(r \vee s))$ into DNF.
Answer: $(\neg p \vee(q \wedge r)) \vee((\neg p \wedge r) \vee(\neg p \wedge s))$.

Conclusion: The three operators: \neg, \wedge, and \vee are functionally complete.

Predicates

A predicate, or propositional function, is a statement involving at least one variable such that, when all variables are either

- assigned a value, or
- bound by a quantifier,
the result is a proposition. The domain, or universe of discourse, for each variable must be clear.
Examples
- $P(x):$ " x is a city in Michigan" with
domain: place names.

$$
P(\text { Philadelphia }) \text { is false, } P\left(D_{c} \text { trait }\right) \text { is true }
$$

- $C(x, y): " y=x^{2}-1$ "
domain: coordinate pairs (x, y) where both x, y are real numbers

$$
C(1,0) \text { is true }
$$

- $A(x, y)$: "The word x contains the letter y " domain: (x, y) consists of a word x and a letter y

$$
A\left(M_{i}\right. \text { sissippic, i) is true }
$$

Quantifiers. We indicate the

- universal quantifier: the symbol \forall is read aloud as "for all" or "for every."
- existential quantifier: the symbol \exists is read aloud as "there exists" or "some."
- uniqueness quantifier: the symbol \exists ! is read aloud as "there exists a unique" or "there is precisely one."

Examples:

1. $P(x)$: " x is mortal"

2. If D is the set of numbers $D=\{1,2,3,4,5\}$, is this statement true?
$\forall x \in D\left(x^{2} \geqslant x\right)$ eruluatis T
3. If x, y are from the domain \mathbb{R}, is the statement true?
$\forall x \forall y(x y=y x)$ evaluates T
4. Say the domain for x is all real numbers. Translate
$\exists x\left(x^{2}=2\right) \quad$ True
5. Translate

$$
\forall x<0\left(x^{2}>2\right)
$$

6. Interpret the statement: $\forall x((x \neq 0) \rightarrow \exists!y(x y=1))$
7. Say the domains for $a_{0}, a_{1}, a_{2}, a_{3}, x$ are \mathbb{R}. Interpret

Va. $V a_{\text {, }} \forall a_{2} \forall a_{3}\left(\left(a_{0} \neq 0\right) \rightarrow \exists x\left(a_{0} x^{3}+a_{1} x^{2}+a_{2} x+a_{3}=0\right)\right)$.
8. Interpret $\exists!x(x$ is omniscient, omnipresent and omnipotent)

Notes:

- The uniqueness quantifier is convenient, but extraneous.
- Quantifiers take precedence over logical operators. Thus

$$
\forall x P(x) \wedge Q(x) \quad \text { means } \quad(\forall x P(x)) \wedge Q(x), \quad \text { not } \quad \forall x(P(x) \wedge Q(x)) .
$$

The latter is logically equivalent to $\forall x P(x) \wedge \forall x Q(x)$.

- A variable in a predicate that has no value or quantifier is free.
- Negating quantifiers. The negation of $\forall x P(x)$ is $\exists_{x} \neg P(x)$

The negation of $\exists x P(x)$ is

$$
\forall x \neg P(x)
$$

$$
\forall x P(x, y) \text { is not a proposition, as } y \text { is free. }
$$

Practice

Websites:

```
        http://scofield.site/courses/m251/worksheets/sWars.txt
https://www.tutorialspoint.com/execute_prolog_online.php
```

1. Write queries for
(a) whether luke is a child of leia.
(b) all children of leia.
(c) all sons of leia.
(d) all uncles of jacen.
(e) all grandchildren of anakin
(f) all names of "force-sensitive" characters (whether sith or jedi)
(g) all names of characters who are both sith and jedi
2. Write rules for
(a) mother (X), so that the mother of X is sought/found
(b) nephew (X)
(c) isForceSensitive (X)
(d) isForceSensitive(X)
(e) grandfather (X)
3. Add information to the knowledge base so that there is a person named owen who appears in response to the query uncle(luke).
