Math 251, Fri 10-Sep-2021 -- Fri 10-Sep-2021
Discrete Mathematics
Fall 2021

Friday, September 10th 2021

Wk 2, Fr
Topic:: Nested quantifiers
Read:: Rosen 1.5
世男

Nested quantifiers

If the statement is true, indicate that. If not, write a "nearby" statement to fix it.

- $\forall x \forall y(x+y=0)$

$$
\forall x \exists y(x+y=0)
$$

- $\exists x \forall y\left((x>0) \rightarrow\left(y^{2}=x\right)\right) \quad \forall y \exists x\left(\left(y^{2}=x\right) \wedge(x \geq 0)\right)$

$$
\forall x\left(x>0 \rightarrow \exists y\left(y^{2}=x\right)\right)
$$

Use quantifiers and symbols to codify the English statement.

- There is a supervisor who oversees every process in the factory $P(x, y):($ person $) \times$ oversees

$$
\exists x \forall y P(x, y)
$$

- Every process in this factory is overseen by some person.

$$
\forall y \exists x P(x, y)
$$

- There is a positive integer that is smallest (i.e., at least as small as any other).

$$
\exists x \forall y(y \geq x)
$$

- There is a real number that has no reciprocal (multiplicative inverse).

$$
\exists x \in \mathbb{R} \forall y \in \mathbb{R}(x y \neq 1)
$$

- There is no smallest real number. [with negation symbol? without one?]

$$
\forall x \in \mathbb{R} \quad \exists y \in \mathbb{R}(y<x)
$$

- Any secret any person knows can be revealed to the right person.

$$
\begin{aligned}
& K(x, s):(\text { person }) \times \text { knows (secret) } s \\
& R(x, y, s):(\text { person }) \times \text { reveals (secret)s to (person) y } \\
& \forall s \not \forall x\left(K(x, s) \rightarrow \exists^{\prime}(R(x, y, s))\right.
\end{aligned}
$$

Negating nested quantifiers

- $\neg \forall x \exists y P(x, y) \equiv \exists x \forall y \neg P(x, y)$
- $\neg \exists x \forall y P(x, y) \equiv \forall x \exists y \neg P(x, y)$
- $\neg \forall x \forall y P(x, y) \equiv \exists x \exists y \neg P(x, y)$
- $\neg \exists x \exists y P(x, y) \equiv \forall x \forall y \neg P(x, y)$
- $\neg \forall x \exists y \forall z P(x, y, z) \equiv \exists x \forall y \exists z \neg P(x, y, z)$

Rewrite the statement in as simple an English statement as possible. Then state the negation of that statement.

- \forall colors C, \exists an animal A such that A is colored C.

$$
\begin{aligned}
& \text { S: No matter the color, some animal is that color. } \\
& \rightarrow \text { S: There is some color that no amimal has. }
\end{aligned}
$$

- \exists a book b such that \forall people p, p has read b.

S: There is a book everyone has read.
\neg S: No matter the book, someone has not read it.

- \forall odd integers n, \exists an integer k such that $n=2 k+1$.

$$
\begin{aligned}
& \text { S: Every odd integer is one greater Than twice Some integer. } \\
& \text { IS: There exists an odd integer that doesn't egad } 2 k+1 \text { for any intepar } k \text {. }
\end{aligned}
$$

- \exists real x such that for all real $y, x+y=0$.

S: Some real number x serves simultaneously as additive inverse to all reals y.
$\rightarrow S$: No matter the choice of x, some real y exists so that $x+y \neq 0$.

