Math 251, Wed 15-Sep-2021 -- Wed 15-Sep-2021
Discrete Mathematics
Fall 2021

Wednesday, September 15th 2021

$$
\begin{array}{ll}
\text { Wk } 3 \text {, We } & \forall, \exists, \exists! \\
\text { Topic:: Set operations } & \exists!\times P(x) \equiv \exists_{x}(P(x) \wedge \forall y(P(y) \rightarrow(y=x))) \\
\text { HW:: PS04 due Wed. } & \exists! \\
\text { Read:: Rosen } 2.2 &
\end{array}
$$

Cartesian products
Exactly too

$$
\exists x \exists y((x \neq y) \wedge P(x) \wedge P(y) \wedge \forall z(P(z) \rightarrow(z=x) \vee(z=y)))
$$

Given sets A, B, define $A \times B=\left\{\right.$ cord. pairs $| |^{\text {st }}$ cord. $\in A, 2^{\text {n! }}$ corr $\left.\mid \in B\right\}$

$$
\begin{aligned}
& \text { Ex. } \quad A=\{1,2,3\}, \quad B=\{a, b, c, d\} \\
& (1, c) \in A \times B \quad \text { but }(c, 1) \notin A \times B, \text { though }(c, 1) \in B \times A \\
& (1, c, d, 3) \in A \times B \times B \times A
\end{aligned}
$$

$\mathbb{R} \times \mathbb{R}\left(\right.$ often written as $\left.\mathbb{R}^{2}\right)$

Sets built from other sets

- Union of sets (two, more than two)

Give A, B, define $A \cup B=\{x \mid x \in A \vee x \in B\}$
membership table
$A \cup B \cup C$

If I have infinitely mong sets
$A_{1}, A_{2}, A_{3}, \ldots$

- Intersection of sets (two, more than two)

- Set subtraction and complementation
- disjoint sets
- breaking $A \cup B$ into a disjoint union
- inclusion-exclusion principle
- complement arises from set subtraction from a universal set

Define $A-B=\{x \mid x \in A \wedge x \notin B\}$
This allows as to break up

$$
A \cup B=(A-B) \cup(A \cap B) \cup(B-A)
$$

into disjoint "pieces" (subsets)

Example: Say $A_{1}=(1,2]$

$$
A_{2}=\left(\frac{1}{2}, 2\right]
$$

generally, $A_{n}=\left(\frac{1}{n}, 2\right]$
Then $\bigcup_{n=1}^{\infty} A_{n}=(0,2]$

For a given set A, define \bar{A} (read as "complement of $A "$)

$$
\bar{A}=\{x \mid x \text { is in universe but } x \notin A\} \text {. }
$$

Ex. 1

$$
\begin{aligned}
& A=\{a, e, i, 0, u\} \\
& \rightarrow \bar{A}=\{\text { consonants }\}
\end{aligned}
$$

Aside: In Chapter I saw De Morgans Laws

$$
\neg(p \vee q) \equiv \neg p \wedge \neg q
$$

Guess:

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

Check it w/ membership table

$$
\begin{array}{ccccccc}
\frac{A}{0} & \frac{B}{0} & \frac{A \cup B}{0} & \frac{\overline{A \cup B}}{1} & \frac{\bar{A}}{1} & \frac{\bar{B}}{1} & \frac{\bar{A} \cap \bar{B}}{1} \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}
$$

Identities (akin to logical equivalences in Chapter 1)

Using your intuition, Venn diagrams, etc., present a plausibly equivalent set on the right-hand side, then prove it (first to yourself).

1. $A-B=$
$A \cap \bar{B}$
2. $A \cup \bar{A}=$ universe

3. $A \cap A=A$
4. $(A \cap B) \cap C=A \cap(B \cap C)$
5. $(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$
6. $\overline{A \cup B}=\bar{A} \cap \bar{B}$
7. $A \cup(A \cap B)=$
8. $\overline{A \cup(B \cap C)}=$

Methods for proving two sets are equal, i.e., $A=B$

- Show $A \subseteq B$ and $B \subseteq A$ (example: 6)
- Invoke set builder description, use logical equivalences (example: 6)
- Show that A and B have the same membership table (example: 8)

