Math 251, Wed 22-Sep-2021 -- Wed 22-Sep-2021
Discrete Mathematics
Fall 2021

Wednesday, September 22nd 2021

Due:: PSO4 due at 11 pm

Wednesday, September 22nd 2021

Wk 4, We Topic: Sequences

HW:: Moodle Quiz Chs. 1-2 ends at Sat.

- Logarithms

For $b>1$, define $\log _{-} b(x)$
Properties of logs
inverse to $\mathrm{b}^{\wedge} \mathrm{x}$
$\log _{-} b(x y)=\log _{-} b x+\log _{-} b y$
$\log _{-} b(x / y)=\log _{-} b x-\log _{-} b y$

Sequences

- (partial) functions from N to R
- notation
- examples:

Fibonacci
constant
arithmetic
geometric

Arithmetic sequences:

- each $a _n=a _\{n-1\}+d$, where d is the common difference
$=\Rightarrow a _n=a _\{n-1\}+d$
$a _n=a _\{n-2\}+2 d$

$$
\begin{aligned}
\mathrm{a} _\mathrm{n} & =\mathrm{a} _\{\mathrm{n}-3\}+3 \mathrm{~d} \\
& \ldots \\
\mathrm{a} _\mathrm{n} & \left.=\mathrm{a} _\theta+\mathrm{nd} \quad \text { (closed formula, requires } \mathrm{a} _\theta, \mathrm{d}\right)
\end{aligned}
$$

- summing terms
$2+9+16+23+\ldots+100$
general: $a _0+a _1+a _2+\ldots+a _n=(n+1)\left(a _0+a _n\right) / 2$

Geometric sequences

- each a_n = ra_\{n-1\}, where r is the common difference
==> $a _n=a _\{n-1\} r$
$a _n=a _\{n-2\} \quad r^{\wedge} 2$
$a _n=a _\{n-3\} r^{\wedge} 3$
...
$a _n=a_{-} 0 r \wedge n \quad$ (closed formula, requires $\left.a_{-} \theta, r\right)$
- summing terms
$2+6+18+54+\ldots+4374$ (last term is $2 * 3^{\wedge} 7$)
general: $\mathrm{a} _0+\mathrm{a} 0 r+a _0 r^{\wedge} 2+\ldots+a _0 r^{\wedge} n=\ldots$

Say you borrow 10 K at 8% interest, compounded monthly. If at the end of each month you pay $\$ 250$, how much will you owe after one month?
how much will you owe after n months?

Is it infective?
(a) $\quad f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}+5$

No. So not invertible.

$$
\begin{aligned}
f^{-1}(\{5,6,9\}) & =\{x \mid f(x)=5 \vee f(x)=6 \vee f(x)=9\} \\
& =\{0,1,2,-1,-2\}
\end{aligned}
$$

(b) $f:[0, \infty) \rightarrow \mathbb{R}$ w/ $f(x)=x^{2}+5 \quad$ is infective.

Is it surjective
(a) $f:[0, \infty) \rightarrow \mathbb{R}$ w/ $f(x)=x^{2}+5$

No
(b) Can we simply change the codomain to make $f(x)=x^{2}+5$ bijective?

Yes. Make it $f:[0, \infty) \rightarrow[5, \infty)$
(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ given $f(x)=3 x-1$

Yes.

Sequences

- functions $\mathbb{N} \rightarrow \mathbb{R}$
$f(0), f(1), f(10000)$ make sense $f(1 / 2)$ doesn't make sense
$f(-5)$ techninull shoulln't either
- Typically subscripts are used for inputs

Instead of $f(0), f(1), f(2), \ldots$
see $f_{0}, f_{1}, f_{2}, \ldots$

- Can be patterned

$$
\frac{2}{a_{0}}, \frac{6}{a_{1}}, \frac{18}{a_{2}}, \underline{54}, \underline{162}, \ldots,-,
$$

$a_{n}=3 \cdot a_{n-1} \quad$ geometric sequence, common ratio $=3$

$$
\begin{aligned}
& 2,7,9,16,25,41, \ldots, \ldots \\
& a_{n}=a_{n-1}+a_{n-2}
\end{aligned}
$$

$$
\begin{aligned}
& 2,7,12,17,22,-, \ldots,
\end{aligned}
$$

$a_{n}=a_{n-1}+5 \quad$ arithmetic sequence, common differace 5

Un patterned

$$
3,1,4,1, \frac{5}{4}, \frac{9}{2},-,
$$

Arithmetic

- Hace form

$$
\begin{aligned}
a_{n} & =a_{n-1}+d \quad(\text { rccursive formula) } \\
& =\left(a_{n-2}+d\right)+d=a_{n-2}+2 d \\
& =a_{n-3}+3 d \\
& =\cdots \\
& =a_{0}+n d . \quad \text { (closed formale) }
\end{aligned}
$$

Ex.J

$$
\begin{aligned}
& a_{0}=15, d=-7 \\
& a_{31}=15+(31)(-7)
\end{aligned}
$$

- Summing ferms in an crithmatio sequence

Ex. J

$$
\begin{aligned}
& 11+18+25+32+39+\cdots+67=S \\
& \frac{67+60+53+46+39+\cdots+11=5}{78+78+78+\cdots+78=25} \\
& \Rightarrow S=\left(\frac{78}{2}\right)\left(\pm 0 f_{\text {tems }}\right)=\left(\frac{f_{\text {irst }}+l_{\text {last }}}{2}\right)\left(\pm . f_{\text {tems }}\right)
\end{aligned}
$$

Cenerally: $a_{0}+a_{1}+a_{2}+\cdots+a_{n} \quad$ (a^{\prime} s from arithmetic sequence)

$$
=\left(\frac{a_{0}+a_{n}}{2}\right)(n+1)
$$

Geomutric

- Patturn (recursive formula)

$$
\begin{aligned}
a_{n} & =a_{n-1} \cdot r \\
& =a_{n-2} \cdot r \cdot r=a_{n-2} \cdot r^{2} \\
& =a_{n-3} \cdot r^{3}=\cdots=a_{0} r^{n} .
\end{aligned}
$$

- Summing terms of a geometric series

$$
\begin{aligned}
& a_{0}+a_{1}+a_{2}+\cdots+a_{n-1}=a_{0}+a_{0} \cdot r+a_{0} r^{2}+\cdots+a_{0} r^{n-1} \\
& S=a_{0}+a_{0} \cdot r+a_{0} r^{2}+\cdots+a_{0} r^{n-1} \leftarrow \text { multiply b th sides by } r \\
& r S=a_{0} r+a_{0} \cdot r^{2}+a_{0} r^{3}+\cdots+a_{0} r^{n}
\end{aligned}
$$

subbruat

$$
S-r S=a_{0}-a_{0} r^{n} \quad \text { factor } \quad(1-r) S=a_{0}\left(1-r^{n}\right)
$$

Divide $\quad S=a_{0} \frac{1-r^{n}}{1-r}$
Ex. 1

$$
\begin{aligned}
2+6 & +18+54+162+486+1458=2 \cdot \frac{1-3^{7}}{1-3} \\
a_{0} & =2 \\
r & =3 \\
n & =7
\end{aligned}
$$

