Math 251, Fri 24-Sep-2021 -- Fri 24-Sep-2021
Discrete Mathematics
Fall 2021

Friday, September 24th 2021

Wk 4, Fr
Topic:: Countable and uncountable infinity

Read:: Rosen 2.5

Say you borrow 10K at 8\% interest, compounded monthly. If at the end of each month you pay $\$ 250$, how much will you owe after one month?
how much will you owe after n months?

More on cardinality: (2.5)

- one-to-one correspondences and cardinality

When there exists $f: A->B$, a bijection, then $|A|=|B|$.

- Facts:

1. If $f: A->B$ is one-to-one, then $|A| \backslash \overline{l_{e}}|B|$. arrow diagram, finite sets
2. Schröder-Bernstein Theorem
obvious for finite sets
infinite sets?
positive evens and $\mathrm{Z}+$ naturals and the integers

- Infinity is infinity is infinity ... or is it? define "countable set"

Cantor's proof there is an uncountable set
8% compounded monthly $\longrightarrow \frac{1}{12}(0.08)$ is assessed each mouth.
\Rightarrow at end of month
(old balance $)(\overbrace{1+\frac{0.08}{12}}^{r}=$ new balance
outset owe $10000=a_{0}$
End of $1^{\text {st month }}(10000-250)(1.0067)=a_{1}=\left(a_{0}-250\right)_{r}$
End if $2^{\text {nd month: }} a_{2}=\left(a_{1}-250\right) r$

$$
\begin{aligned}
& =\left[\left(a_{0}-250\right) r-250\right] r \\
& =a_{0} r^{2}-250 r^{2}-250 r
\end{aligned}
$$

End of $3^{\text {re }}$ month:

$$
a_{3}=a_{0} r^{3}-250\left(r^{3}+r^{2}+r\right)
$$

After n months:

$$
a_{n}=a_{0} r^{n}-250\left(r^{n}+r^{n-1}+\cdots+r\right)
$$

tums in a geometric sequence.

$$
\frac{r+r^{2}+\cdots+r^{n}}{n \text { terms }}=r \cdot \frac{1-r^{n}}{1-r}
$$

common ratio r
$1^{\text {st }}$ term r

$$
a_{n}=a_{0} r^{n}-250 r \cdot \frac{1-r^{n}}{1-r}
$$

closed formula

What about adding infinitely many terms of a geometric

$$
\begin{aligned}
a_{0}+a_{0} r+a_{0} r^{2}+a_{0} r^{3}+\cdots+a_{0} r^{n}+\cdots & =a_{0} \cdot \frac{1}{1-r} \\
& \uparrow_{\text {true ff }}|r|<1 .
\end{aligned}
$$

Ea.J

$$
\begin{array}{r}
3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\cdots \\
=\frac{3 \cdot\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\cdots\right)}{a_{0}=1, \quad r=1 / 2} \\
\text { parentheses }=1 \cdot \frac{1}{1-1 / 2}=1 \cdot \frac{1}{1 / 2}=2
\end{array}
$$

Sum of all trons

$$
3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\cdots=3 \cdot 2=6
$$

Ex.

$$
\begin{aligned}
& 0.32 \overline{9}=3 \cdot \frac{1}{10}+2 \cdot \frac{1}{10^{2}}+9 \cdot \frac{1}{10^{3}}+9 \cdot \frac{1}{10^{4}}+\cdots \\
& =0.3+0.02+\frac{9}{\frac{9}{10^{3}} \cdot 1+\frac{9}{10^{3}} \cdot \frac{1}{10}+\frac{9}{10^{3}} \cdot\left(\frac{1}{10}\right)^{2}+\cdots} \\
& a_{0}=\frac{9}{10^{3}}, \quad r=1 / 10 \quad \text { sums to } \\
& 0.32 \overline{9}=0.3+0.02+\frac{9}{10^{3}} \cdot \frac{1}{1-1 / 10}=\frac{9}{10^{3}} \cdot \frac{10}{9}
\end{aligned}
$$

Ex.] Naturals \mathbb{N}, nonnegative evens

$$
\begin{array}{r}
\{0,1,2,3, \ldots\} \quad\{0,2,4,6, \ldots\} \\
B \subseteq A \quad \Rightarrow \quad|B| \leq|A|
\end{array}
$$

Check out $f: A \rightarrow B$ given by $f(n)=2 n$

injection from A to B

$$
\rightarrow|A| \leq|B|
$$

Schrolter

- Bunstaín

Deft: A set is called countable if

- its cardinality is finite, or
- it can be put in $1-1$ correspondence w/ N.

Examples:

1. $A=\{1,2,3\}$.
2. \mathbb{Z}
3. N
4. Q
5. $\{0,2,4,6, \ldots\}$

Nonexample: $(0,1)$.

There are different sizes of infinity

$$
|\mathbb{N}|=|\mathbb{Q}|<|(0,1)|=|\mathbb{R}|
$$

