Math 251, Wed 29-Sep-2021 -- Wed 29-Sep-2021 Discrete Mathematics Fall 2021

Wednesday, September 29th 2021 Wk 5, We Topic:: Hilbert Hotel Topic:: Algorithms

A set is countable it . it is finite, or it can be put in 1-1 correspondence with N Countably intinite

Terms: finite set, countably infinite set

Cantor's proof of an uncountable infinity

Hilbert's Grand Hotel

Cantor claimed: [0,1] are not countably infinite

proof by contradiction = Suppose [U,1] is countable. Then if can be commercited $\begin{bmatrix} 0 & 1 \end{bmatrix}$ $a_{1} = 0. a_{11} a_{12} a_{13} a_{14} \dots$ $a_{1} = 0. a_{2}, a_{22} a_{23} a_{24} \cdots$ a3 = 0. a31 a32 a33 a34 --ay = U. ay, ay2 ay3 ayy ... Now construct a number $b = 0.b, b_2 b_3 b_4 \dots$ At each stage, make $b_i = \begin{cases} 3 & \text{if } a_{ii} = 2 \\ 2 & \text{if } a_{ii} \neq 2 \end{cases}$ So we have a number & E [0, 1] but doesn't match any of those in enumerated list. This is contradicte our original assumption that [0, 1] is countably infinite.

Player B

H(P, I)

Algorithms

Properties

- specified set of inputs (domain)
- every input produces output from codomain
- definiteness: clear process to follow
- correctness: accurately finds correct output for each input
- finiteness: desired output is produced after finite number of steps
- effectiveness: possible to do each step in finite amount of time
- generality: applicable to all problems of desired form

Note: Not all problems are solvable in the sense of having an algorithm as described above.

Example: Halting problem. At least one problem is unsolvable.

What is sought in the halting problem: An algorithm that can decide, given any computer program and set of inputs, whether the program halts in finitely many steps. Suppose such a procedure exists, and write

H: {programs} × {inputs} \rightarrow {"halts", "DNH"}.

Note: H(P, P) is defined and will have either the value "halts" or "DNH". Define a procedure *K* which takes programs *P* as inputs, and $\chi(\Gamma)$

loops forever ("DNH") if H(P, P) = "halts". "halts" if H(P, P) = "DNH".

Notice that H(K, K) can produce either of two values, but both contradict the behavior of K(K).

like the liars paradox

Specific algorithms

Binary Search
import numpy as np
Binary search:
def binSrch(key, inList):
i =1
j = len(inList)
while (i < j):
m = int(np.floor((i+j) / 2))
if $(key > inList[m-1])$:
i = m + 1
else:
j = m
if $(\text{key} == \text{inList}[i-1])$:
index = i
else:
index = 0
return(index-1)

Bubble sort

```
def bubbleSort(inList):
n = len(inList) - 1
for i in range(n):
   for j in range(n-i):
      if ( inList[j] > inList[j+1]):
      temp = inList[j]
      inList[j+1] = inList[j]
      inList[j] = temp
return(inList)
```

Insertion sort

```
def insertionSort(inList):
n = len(inList)
for j in range(1,n):
  i = 0
  while inList[j] > inList[i]:
      i += 1
      m = inList[j]
      for k in range(j-i):
          inList[j-k] = inList[j-k-1]
      inList[i] = m
  return(inList)
```