
Math 251, Wed 29-Sep-2021 -- Wed 29-Sep-2021

Discrete Mathematics

Fall 2021

Wednesday, September 29th 2021

Wk 5, We

Topic:: Hilbert Hotel

Topic:: Algorithms

Terms: finite set, countably infinite set

Cantor’s proof of an uncountable infinity

Hilbert’s Grand Hotel

Aset is countable if
it is finite or
sitcanbeputsullcorrespondencewithin

untablyinfinite

Examples
wens 2 4 6 8 10

7L O I I 2 2 3 3 4 4

o i i 2 h 4 is
a j

i
2 212 2 Wly

3

Cantor claimed 0 I are not countably infinite

proof 1g contradiction i

Suppose 0,1 is countable

Then it can be enumerated

a 0 a 9,29394i
a T O Az AzzAzzAzy2
a 0 93,9329339343

ay U Ay 942943914

Now construct a number to O b b b b

3 if a 2Ateachstage make bi z if aii 2

So we have a number b t 0 I but doesn't

match any of those in enumerated list

This is contradicts our original assumption that

o D is countably infinite

Player A Player A

1 X O X O X O l O X o X O X
Z X X O X O O 2 X X O X X O
3 X X X X 0 O 3 X O X X O X
4 X X o O X X 4 X o o X O X
5 X X O O O O 5 X o o o X O
G X X O O X O 6 X o o o o

Player B Player B

X X OO X X O OO O 0

Player A Player A

1 I

2 2

3

34 4
5

56 6

Player B Player B

MATH 251 Notes Algorithms

Algorithms

Properties

• specified set of inputs (domain)

• every input produces output from codomain

• definiteness: clear process to follow

• correctness: accurately finds correct output for each input

• finiteness: desired output is produced after finite number of steps

• e↵ectiveness: possible to do each step in finite amount of time

• generality: applicable to all problems of desired form

Note: Not all problems are solvable in the sense of having an algorithm as described above.

Example: Halting problem. At least one problem is unsolvable.

What is sought in the halting problem: An algorithm that can decide, given any computer program

and set of inputs, whether the program halts in finitely many steps. Suppose such a procedure

exists, and write

H : tprogramsu ˆ tinputsu Ñ t”halts”, ”DNH”u.

Note: HpP,Pq is defined and will have either the value ”halts” or ”DNH”. Define a procedure K

which takes programs P as inputs, and

loops forever (”DNH”) if HpP,Pq “ ”halts”.

”halts” if HpP,Pq “ ”DNH”.

Notice that HpK,Kq can produce either of two values, but both contradict the behavior of KpKq.

2

K P
HCP I

like the liar's paradox

MATH 251 Notes Algorithms

Specific algorithms⌥ ⌅
import numpy as np

Binary search:

def binSrch(key, inList) :

i = 1

j = len(inList)

while (i < j) :

m = int(np.floor((i+j) / 2))

if (key > inList [m=1]):

i =m+1

else :

j =m

if (key == inList[i=1]):

index = i

else :

index = 0

return(index=1)⌃ ⇧

3

BinarySearch

are

MATH 251 Notes Algorithms

Bubble sort⌥ ⌅
def bubbleSort(inList) :

n = len(inList) = 1

for i in range(n):

for j in range(n=i):

if (inList [j] > inList [j+1]) :

temp = inList[j+1]

inList [j+1] = inList [j]

inList [j] = temp

return(inList)⌃ ⇧

4

MATH 251 Notes Algorithms

Insertion sort⌥ ⌅
def insertionSort (inList) :

n = len(inList)

for j in range(1,n):

i = 0

while inList[j] > inList [i]:

i += 1

m = inList[j]

for k in range(j=i) :

inList [j=k] = inList [j=k=1]

inList [i] =m

return(inList)⌃ ⇧

5

