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proof 1g contradiction i

Suppose 0,1 is countable

Then it can be enumerated

a 0 a 9,29394i
a T O Az AzzAzzAzy2
a 0 93,9329339343

ay U Ay 942943914

Now construct a number to O b b b b

3 if a 2Ateachstage make bi z if aii 2

So we have a number b t 0 I but doesn't

match any of those in enumerated list

This is contradicts our original assumption that

o D is countably infinite
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MATH 251 Notes Algorithms

Algorithms

Properties

• specified set of inputs (domain)

• every input produces output from codomain

• definiteness: clear process to follow

• correctness: accurately finds correct output for each input

• finiteness: desired output is produced after finite number of steps

• e↵ectiveness: possible to do each step in finite amount of time

• generality: applicable to all problems of desired form

Note: Not all problems are solvable in the sense of having an algorithm as described above.

Example: Halting problem. At least one problem is unsolvable.

What is sought in the halting problem: An algorithm that can decide, given any computer program

and set of inputs, whether the program halts in finitely many steps. Suppose such a procedure

exists, and write

H : tprogramsu ˆ tinputsu Ñ t”halts”, ”DNH”u.

Note: HpP,Pq is defined and will have either the value ”halts” or ”DNH”. Define a procedure K

which takes programs P as inputs, and

loops forever (”DNH”) if HpP,Pq “ ”halts”.

”halts” if HpP,Pq “ ”DNH”.

Notice that HpK,Kq can produce either of two values, but both contradict the behavior of KpKq.

2

K P
HCP I

like the liar's paradox



MATH 251 Notes Algorithms

Specific algorithms⌥ ⌅
import numpy as np

Binary search:

def binSrch(key, inList ) :

i = 1

j = len( inList )

while (i < j ) :

m = int(np.floor( ( i+j) / 2 ) )

if (key > inList [m=1]):

i =m+1

else :

j =m

if (key == inList[i=1]):

index = i

else :

index = 0

return(index=1)⌃ ⇧
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Bubble sort⌥ ⌅
def bubbleSort(inList) :

n = len( inList ) = 1

for i in range(n):

for j in range(n=i):

if ( inList [ j ] > inList [ j+1] ) :

temp = inList[ j+1]

inList [ j+1] = inList [ j ]

inList [ j ] = temp

return(inList )⌃ ⇧
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Insertion sort⌥ ⌅
def insertionSort ( inList ) :

n = len( inList )

for j in range(1,n):

i = 0

while inList[ j ] > inList [ i ]:

i += 1

m = inList[ j ]

for k in range(j=i) :

inList [ j=k] = inList [ j=k=1]

inList [ i ] =m

return(inList )⌃ ⇧
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