Comparing the Growth of Functions as Inputs (x or n) $\rightarrow \infty$

Suppose f and g are real-valued functions on a domain that includes nonnegative real numbers. We say that

- f is of order at most g, written $f(x)$ is $O(g(x))$, ff there exists $C>0$ and $k \geqslant 0$ such that

$$
|f(x)| \leqslant C|g(x)|, \quad \text { for all real numbers } x>k
$$

We call C, k witnesses to this Big- O relationship.

- f is of order at least g, written $f(x)$ is $\Omega(g(x))$, ff there exists $C>0$ and $k \geqslant 0$ such that

$$
|f(x)| \geqslant C|g(x)|, \quad \text { for all real numbers } x>k
$$

- f is of order g, written $f(x)$ is $\Theta(g(x))$, iff f is simultaneously of order at most g and of order at least g.

Note: Similar definitions hold for sequences (functions from \mathbb{N} to \mathbb{R}).
Examples:

1. Find witnesses that demonstrate $f(x)=3 x^{3}+2 x+7$ is $O\left(x^{3}\right)$.
got witnesses

From graph, it appears $\left|3 x^{3}+2 x+7\right| \leq 4\left|x^{3}\right|$ when $x>3$
Or, without graphing:

$$
\begin{aligned}
\left|3 x^{3}+2 x+7\right| & =3 x^{3}+2 x+7 \leq 3 x^{3}+2 x^{3}+7 x^{3}=12 x^{3}=121 x^{3} \mid \\
\text { if } x>0 & \uparrow \geq 1 \quad \text { witnesses } \quad C=12 \\
& k=1
\end{aligned}
$$

2. Show that $f(x)=\frac{15 \sqrt{x}(2 x+9)}{x+1}$ is $\Theta\left(x^{1 / 2}\right)$.

$$
\begin{aligned}
& \text { To show } O(\sqrt{x}) \text {, want a series of } \leq \frac{15 \sqrt{x}(2 x+9)}{x+1} \leq \frac{15 \sqrt{x}(3 x)}{x+1} \leq \frac{15 \sqrt{x}(3 x)}{x}=45 \sqrt{x} \\
& \\
& \text { if } x \geq 9 \\
& \Rightarrow \text { left fr. is } O(\sqrt{x}) \text { with withesses } \quad \begin{array}{l}
\quad C=45 \\
\end{array}
\end{aligned}
$$

Now show f is $\Omega(\sqrt{x})$. Start

$$
\frac{15 \sqrt{x}(2 x+9)}{x+1} \geq \frac{15 \sqrt{x}(2 x)}{x+1} \geq \frac{15 \sqrt{x}(2 x)}{2 x}=15 \sqrt{x}
$$

So f is $\Omega(\sqrt{x})$ with witnesses: $\quad C=15, k=1$
$\operatorname{Big} O: \quad f$ is $O(g(x))$

$\left.\begin{array}{l}f \text { is } O(g(x)) \text { since witherses } C_{1}, k_{1} \text { say so } \\ f \text { is } \Omega(g(x)) \text { since withesses } C_{2}, k_{2} \text { say so }\end{array}\right\}$
$C_{1}, C_{2}, \max \left(k_{1}, k_{2}\right)$ are witnesses
to f being $\Theta(g(x))$

