Comparing the Growth of Functions as Inputs (*x* **or** *n***)** $\rightarrow \infty$

Suppose *f* and *g* are real-valued functions on a domain that includes nonnegative real numbers. We say that

• *f* is of order at most *g*, written f(x) is O(g(x)), iff there exists C > 0 and $k \ge 0$ such that

 $|f(x)| \leq C|g(x)|$, for all real numbers x > k.

We call *C*, *k* **witnesses** to this **Big**-*O* relationship.

• *f* is of order at least *g*, written f(x) is $\Omega(g(x))$, iff there exists C > 0 and $k \ge 0$ such that

 $|f(x)| \ge C|g(x)|$, for all real numbers x > k.

• *f* is of order *g*, written f(x) is $\Theta(g(x))$, iff *f* is simultaneously of order at most *g* and of order at least g.

Note: Similar definitions hold for sequences (functions from \mathbb{N} to \mathbb{R}).

Examples:

1. Find witnesses that demonstrate $f(x) = 3x^3 + 2x + 7$ is $O(x^3)$. From graph, it appears $|3x^3 + 2x + 7| \leq 4|x^3|$ when x > 3 D_{r_1} without anothing i

$$\begin{array}{cccc} & \text{Or, without qraphing} & & \\ & & & \\ & & & & \\ &$$

2. Show that $f(x) = \frac{15\sqrt{x}(2x+9)}{x+1}$ is $\Theta(x^{1/2})$. To show $O(\sqrt{x})$, want a series of \leq starting up $\frac{15\sqrt{x}/2x+9}{x+1}$

$$\frac{15\sqrt{x}(2x+q)}{x+1} \leq \frac{15\sqrt{x}(3x)}{x+1} \leq \frac{15\sqrt{x}(3x)}{x} = 45\sqrt{x}$$

if $x \geq q$
 \Rightarrow left fm is $O(\sqrt{x})$ with witnesses $C = 45$
 $k = q$

Now show f is $\Omega(\sqrt{x})$. Start $\frac{15\sqrt{x}(2x+9)}{x+1} \geq \frac{15\sqrt{x}(2x)}{x+1} \geq \frac{15\sqrt{x}(2x)}{2x} = 15\sqrt{x}$ So f is $\Omega(\sqrt{x})$ with witnesses : C = 15, k = 1

$$C_1, C_2, \max(k_1, k_2)$$
 are vitnesses
to f being $\Theta(g(x))$