Math 251, Wed 6-Oct-2021 -- Wed 6-Oct-2021
Discrete Mathematics
Fall 2021

Wednesday, October 6th 2021

Wk 6, We
Topic:: Big-Oh heirarchy
HW:: PS06 due Thurs.
3. It is a fact that, for all real numbers $x>2$,

$$
10\left|x^{6}\right| \leqslant\left|17 x^{6}-45 x^{3}+2 x+8\right| \leqslant 30\left|x^{6}\right|
$$

Given this, what sort of Big-O, Big- Ω and/or Big- - statements are possible here?
Conclusion: $17 x^{6}-45 x^{3}+2 x+8$ is $\theta\left(x^{6}\right)$

$$
\text { (ie., its of order } x^{6 "} \text {) }
$$

Some Facts:
Triangle Inequality

$$
|x+y| \leq|x|+|y|
$$

1. If $m \geqslant n$ and f is a polynomial of degree n, then $f(x)$ is $O\left(x^{m}\right)$.

$$
\begin{aligned}
& f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
& |f(x)|=\left|a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\right| \leq\left|a_{n} x^{n}\right|+\left|a_{n-1} x^{n-1}\right|+\cdots+\left|a_{1} x\right|+\left|a_{0}\right| \\
& =\left|a _ { n } \left\|x ^ { n } | + | a _ { n - 1 } \| x ^ { n - 1 } | + \cdots + | a _ { 1 } | | x \left|+\left|a_{0}\right|\right.\right.\right. \\
& \text { if }_{x \geq 1} \leqslant\left|a_{n}\right|\left|x^{n}\right|+\left|a_{n-1}\right|\left|x^{n}\right|+\cdots+\left|a _ { 1 } \left\|x ^ { n } \left|+\left|a_{0} \| x^{n}\right|=\left|x^{n}\right|\left(\left|a_{n}\right|+\cdots+\left|a_{1}\right|+\left|a_{0}\right|\right)\right.\right.\right. \\
& \leq\left|x^{m}\right|\left(\left|a_{n}\right|+\cdots+\left|a_{1}\right|+\left|a_{0}\right|\right) \text { - giving } f \text { is } O\left(x^{m}\right) \text { w/ witnesses } \\
& k=1, \quad C=\left(\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{n}\right|\right) .
\end{aligned}
$$

2. $n!$ is $O\left(n^{n}\right)$ and, as a consequence, $\log _{b} n!$ is $O\left(n \log _{b} n\right)$, for any $b>1$.

$$
\begin{aligned}
& n!=n(n-1)(n-2) \cdots(1) \leq n \cdot n \cdot n \cdots n=n^{n} \\
& \log _{b} n!\leq \log _{b}\left(n^{n}\right)=n \log _{b} n
\end{aligned}
$$

3. It can be shown that $n<2^{n}$ for $n \geqslant 1$ and, as a consequence, $\log _{b} n$ is $O(n)$ for all $b>1$.

$$
\log _{6} n<\log _{b}\left(2^{n}\right)=n \log _{b} 2
$$

4. If $f_{1}(x)$ is $O\left(g_{1}(x)\right)$ and $f_{2}(x)$ is $O\left(g_{2}(x)\right)$, then $\left(f_{1}+f_{2}\right)(x)$ is $O\left(\max \left(\left|g_{1}(x)\right|,\left|g_{2}(x)\right|\right)\right)$.

$$
\begin{aligned}
& x^{2}+3 \sqrt{x}+\log _{2} x \quad \text { is } O\left(x^{2}\right) \\
& \downarrow \\
& O\left(x^{2}\right) \\
& O\left(x^{1 / 2}\right) \quad O(x)
\end{aligned}
$$

5. If $f_{1}(x)$ is $O\left(g_{1}(x)\right)$ and $f_{2}(x)$ is $O\left(g_{2}(x)\right)$, then $\left(f_{1} f_{2}\right)(x)$ is $\left.O\left(g_{1}(x) g_{2}(x)\right)\right)$.

$$
x^{3}\left(\log _{2} x\right) \text { is } O\left(x^{4}\right)
$$

6. As a result of Facts 3 and 5, we have

$$
n \log _{b} n \text { is } O\left(n^{2}\right), \quad x^{p}\left(\log _{b} x\right)^{q} \text { is } O\left(x^{p+q}\right), \quad \text { etc. }
$$

7. If $f(x)$ is $O(g(x))$ and $g(x)$ is $O(h(x))$, the $f(x)$ is $O(h(x))$.
Transitive property
8. For any values $a, b>1, \log _{a} x$ is $O\left(\log _{b} x\right)$.

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}=\left(\frac{1}{\log _{b} a}\right) \cdot \log _{b} x
$$

9. Let $c>b>1$, and $d>0$. For comparing of a power function x^{d} with an exponential growth function b^{x}, we have

$$
x^{d} \text { is } O\left(b^{x}\right), \quad \text { but not vice versa. }
$$

For comparing the two exponential growth functions c^{x}, b^{x} we have

$$
\begin{aligned}
& b^{x} \text { is } O\left(c^{x}\right), \quad \text { but not vice versa. } \\
& \text { So, } 2^{x} \text { is } O\left(3^{x}\right) \text {, but } 3^{x} \text { is not } O\left(2^{x}\right)
\end{aligned}
$$

10. It requires calculus, but it can be shown that for any $b>0, c>0,\left(\log _{b} x\right)^{c}$ is $O(x)$.

There is, therefore, this increasing sequence of orders: $1, \log _{b} n,\left(\log _{b} n\right)^{2},\left(\log _{b} n\right)^{3}, \ldots, n$, $n \log _{b} n, n\left(\log _{b} n\right)^{2}, \ldots, n^{2}, n^{2} \log _{b} n, n^{3}, \ldots, 2^{n}, 3^{n}, \ldots, n!, n^{n}$.

Show that $f(x)=x^{2}$ is not $O(x)$. Weill prove this by contradiction - ie. assume the oppsite is trace, and see if lead to a contradiction.
Start: Assume x^{2} is $O(x)$, which means there are witnesses $C>0$ and

$$
k>0 \text { such that, whenever } x \geq k, \quad C|x| \geq\left|x^{2}\right| \text {. }
$$

Let choose $x^{*}=1+\max (C, k)$. Since $x^{*}>k$, we here

$$
C\left|x^{*}\right| \geq\left|\left(x^{*}\right)^{2}\right|=\left|x^{*} \| x^{*}\right| \geq(C+1)\left|x^{*}\right|
$$

Now divide both sides of $C\left|x^{*}\right| \geq(C+1)\left|x^{*}\right|$ by $\left|x^{*}\right|$

$$
C>C+1 \quad \text { Nonsense! }
$$

Theorem 1: Let $f(x)$ be a polynomial of degree n-that is,

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0},
$$

with $a_{n} \neq 0$. Then

- $f(x)$ is $O\left(x^{s}\right)$ for all integers $s \geqslant n$.
- $f(x)$ is $\operatorname{not} O\left(x^{r}\right)$ for all integers $r<n$.
- $f(x)$ is $\Omega\left(x^{r}\right)$ for all integers $r \leqslant n$.
- $f(x)$ is not $\Omega\left(x^{s}\right)$ for all integers $s>n$.
- $f(x)$ is $\Theta\left(x^{n}\right)$.

