Math 251, Wed 13-Oct-2021 -- Wed 13-Oct-2021 Discrete Mathematics Fall 2021

Wednesday, October 13th 2021

Wk 7, We Topic:: Induction Read:: Rosen 5.1

HW:: Moodle Quiz Chs. 2-3 ends Thurs.

 $\forall x \in \mathbb{Z}^{+}, P(x)$

Mathematical Induction

- It is a technique for proving a statement $\forall n \in \mathbb{Z}^+ P(n)$.
- Can be adapted to prove the correctness of some algorithms.
- As a rule of inference, it is

$$(P(1) \land \forall k (P(k) \rightarrow P(k+1))) \rightarrow \forall n P(n).$$

P(1) is called the **basis step**, $P(k) \rightarrow P(k+1)$ is called the **inductive step**, and the assumption that the hypothesis P(k) of the inductive step holds is called the **inductive hypothesis**.

Induction is not helpful in discovering new mathematical statements which are true. Once a pattern or truth has been conjectured, however, induction can often establish that it is true.

Examples:

Examples:
1.
$$\sum_{j=1}^{n} (2j-1) = 1+3+5+\dots+(2n-1) = ? n$$

$$p(n) \text{ sugs the sum of the first}$$

$$p(n) \text{ sugs the sum of t$$

3. For all positive integers, $n < 2^n$.

Here
$$P(n)$$
: $n < 2^n$. basis step: $P(1)$ says $1 < 2$.
induction step: Can assume $P(k)$ holds for some k , that is $k < 2^k$.
must show: $k+1 < 2^{k+1}$
 $k+1 < 2^k + 1 < 2^k + 2^k = 2(2^k) = 2^{k+1}$.
by induction hypothesis
2
by induction hypothesis

$$\frac{1+3+5+\cdots+(2k-1)+(2k+1)}{f_{int}+k} = \frac{1}{k} + (2k+1)$$

$$\frac{1}{f_{int}+k} = ps.$$

$$\frac{1}{ps. odd} = (k+1)^{2}$$

$$\frac{1$$

v

4. For all
$$n \in \mathbb{N} - \{0, 1, 2, 3\}, 2^n < n!$$

basis step: $P(4)$ says $2^4 < 4!$
induction step: Assume $P(h)$, i.e., $2^k < k!$, holds for some $k \ge 4$.
Need to show $P(h+1)$ holds $-$ i.e. $2^{k+1} < (k+1)!$
 $2^{k+1} = 2 \cdot 2^k < 2 k! < (k+1) \cdot k! = (k+1)!$
inductive hypothesis

5. If *B* is a set with |B| = n, then $|\mathcal{P}(B)| = 2^n$, for all $n \in \mathbb{N}$.