Math 251, Wed 13-Oct-2021 -- Wed 13-Oct-2021
Discrete Mathematics
Fall 2021

Wednesday, October 13th 2021

Wk 7, We
Topic:: Induction
Read: : Rosen 5.1
HW:: Moodle Quiz Chs. 2-3 ends Thurs.

$$
\notin x \in \mathbb{Z}^{+}, P(x)
$$

Mathematical Induction

- It is a technique for proving a statement $\forall n \in \mathbb{Z}^{+} P(n)$.
- Can be adapted to prove the correctness of some algorithms.
- As a rule of inference, it is

$$
(P(1) \wedge \forall k(P(k) \rightarrow P(k+1))) \rightarrow \forall n P(n)
$$

$P(1)$ is called the basis step, $P(k) \rightarrow P(k+1)$ is called the inductive step, and the assumption that the hypothesis $P(k)$ of the inductive step holds is called the inductive hypothesis.

Induction is not helpful in discovering new mathematical statements which are true. Once a pattern or truth has been conjectured, however, induction can often establish that it is true.

Examples:

1. $\sum_{j=1}^{n}(2 j-1)=1+3+5+\cdots+(2 n-1)=n^{2}$
$P(n)$ sums "the sum of the first
basis step: $P(1)$ s s $1=1^{2}$
induction step:
Con assume $P(k) h_{0} l_{s}$ - i.e., that $1+3+\cdots+(2 k-1)=k^{2}$
for some $k \geq 1$. Must show: $1+3+\cdots+(2 k-1)+(2 k+1)=(k+1)^{2}$
see below
2. For all positive integers, $23^{n}-1$ is divisible by 11 .

Hare $P(n): " 11 \mid 23^{n}-1 "$
basis step: $P(1)$ says "23-1 is divisible by $11 "$
indudion step: See below
3. For all positive integers, $n<2^{n}$.

Here $P(n): n<2^{n}$. basis step: $P(1)$ says $1<2$.
induction step: Can assume $P(k)$ holds for some k, that is $k<2^{k}$. must show: $k+1<2^{k+1}$.

$$
\text { k+1 }<z^{k}+1<z^{k}+2^{k}=2\left(z^{k}\right)=2^{k+1} \text {. }
$$

$$
\begin{aligned}
& \frac{1+3+5+\cdots+(2 k-1)}{\text { first } k \text { pos. }}+\frac{(2 k+1)}{(k+1)^{35}} \\
& \text { pos. odd }
\end{aligned}=k^{2}+(2 k+1)
$$

Assume $P(k)$ holds for some $k \in \mathbb{Z}^{+}$-ie., $23^{k}-1$ is divisible by 11 .

$$
\begin{aligned}
23^{k+1}-1 & =23^{k+1}-23^{k}+23^{k}-1 \\
& =\left(23^{k+1}-23^{k}\right)+\left(23^{k}-1\right) \\
& =23^{k}(23-1)+\left(23^{k}-1\right) \\
& =\frac{23^{k}(22)}{\text { "dearly" divisible }}+\frac{\left(23^{k}-1\right)}{\text { divisible by I1 }} \begin{array}{l}
\text { by induction hyp. }
\end{array}
\end{aligned}
$$

which gives a sum that is divisible by 11 . By induction, $f_{n} \in \mathbb{Z}^{+}, P(a)$ holds.
4. For all $n \in \overparen{\mathbb{N}-\{0,1,2,3\}}, 2^{n}<n!\quad P(n): 2^{n}<n$! basis step: $P(4)$ says $2^{4}<4$!
induction step: Assume $P(h)$, ie, $2^{k}<k!$, holly for some $k \geq 4$. Need to show $P(k+1)$ hills - ie. $2^{k+1}<(k+1)$!

$$
2^{k+1}=2 \cdot 2^{k}<k^{\substack{\text { inductive } \\ \\ \\ \\ \\ \text { hypothesis }}}
$$

5. If B is a set with $|B|=n$, then $|\mathcal{P}(B)|=2^{n}$, for all $n \in \mathbb{N}$.
