Math 251, Mon 18-Oct-2021 -- Mon 18-Oct-2021
Discrete Mathematics
Fall 2021

Monday, October 18th 2021

Due:: WW MathematicalInduction due Mon.

Monday, October 18th 2021

Wk 8, Mo
Topic:: Induction
Topic:: Strong induction
Read: : Rosen 5.2

Strong Induction and the Well-Ordering Principle

$$
4=2.2 \text { composite }
$$

5 is prime

$$
6=2.3 \text { composite }
$$

Mathematical induction can be expressed as the rule of inference

$$
\left(P(1) \wedge \forall k \in \mathbb{Z}^{+},(P(k) \rightarrow P(k+1))\right) \rightarrow \forall n \in \mathbb{Z}^{+}, P(n) . \quad 24=2.2 .2 .3
$$

Example 1: Fundamental Theorem of Arithmetic
Every integer $n \geqslant 2$ is a prime or can be written as the product of primes (
$P(h): k$ is prime or the product of primes.
Note: A prime number is a positive integer greater than 1 that has no positive (integer) factors besides 1 and itself.
Basis step: $P(2)$ say 5 " Z is prime".
Used Induction step: Assume $P(k)$ holds for some $k \geq 2$. Show $P(k+1)$.
$P(k+1)$ says $k+1$ is prime or pood. of primes.
If the $k+1$ is not prime, then

$$
k+1=p q \quad \text { with } \quad 1<p, q \leq k
$$

Induction, as described above, is inadequate.
Consider this modified version:

$$
\left(P(1) \wedge \forall k \in \mathbb{Z}^{+},(P(1) \wedge P(2) \wedge \cdots \wedge P(k) \rightarrow P(k+1))\right) \rightarrow \forall n \in \mathbb{Z}^{+}, P(n)
$$

As before, if $k+1$ is not prime and

$$
k+1=p q \quad w \quad 1<p, q \leq k
$$

then this) (new) induction hypothesis says

$$
\begin{aligned}
p & =p_{1} p_{2} \cdots p_{l} \quad(\text { prions questing } p) \\
q & =q_{1} q_{2} \cdots q_{m} \quad\left(\text { primes querating } q^{\prime}\right) \\
\rightarrow k_{1} 1 & =\left(p_{1} p_{2} \cdots p_{l}\right) \cdot\left(q_{1}, q_{2} \cdots q_{m}\right) \quad \text { showing } p(k+1)
\end{aligned}
$$

Example 2:
For any $n \geqslant 8, n$ cents can be obtained using $3 \not \subset$ and $5 \not \subset$ coins.

$$
\left.\begin{array}{l}
8=3+5 \\
9=3(3) \\
10=2(5) \\
11=2(3)+5=8+3
\end{array}\right\}
$$

Induction strap: If $P(8) \wedge P(9) \wedge P(10) \wedge \cdots \wedge P(h)$ hold (IH) then, in particular, $P(k-2)$ holds - that is Nod $k \geq 10$

$$
k-2=1(3)+m(5)
$$

and therefore

$$
\begin{aligned}
k+1 & =(k-2)+3=l(3)+m(5)+3 \\
& =(l+1)(3)+m(5)
\end{aligned}
$$

Basis Step: $\left.\begin{array}{rl}P(8) \\ & P(9) \\ P(10)\end{array}\right\}$ done here

A generalization (equally valid form) of mathematical induction.

Definition 1 (Principle of Strong Mathematical Induction): Let $P(n)$ be a property that is defined for integers n, and let a, b be fixed integers with $a \leqslant b$. Suppose the following statements are true:

1. $P(a), P(a+1), \ldots, P(b)$ are all true (basis step).
2. For any integer $k \geqslant b$, if $P(i)$ is true for all integers i from a through k, then $P(k+1)$ is true (inductive step). $\quad P(a) \wedge P(a+1) \wedge P(a+2) \wedge \ldots \wedge P(h)$ Then the statement "for all integers $n \geqslant a, P(n)$ " is true. $\quad \rightarrow P(k+1)$

The supposition that $P(i)$ is true for all integers i from a through k in number 2 above is designated as the inductive hypothesis in this form of induction.

We have two equivalent notions of induction. A third notion that looks different but is nonetheless equivalent is the Well-Ordering principle.

Definition 2 (Well-Ordering Principle): Suppose $A \subseteq \mathbb{N}$. Then A has a smallest element. That is, $\exists a \in A$ such that $\forall b \in A,(a \leqslant b)$.

Note that the set \{positive real numbers\} does not have a smallest element, but that this does not violate the well-ordering principle.

1. Let $a_{0}, a_{1}, a_{2}, \ldots$ be the sequence defined by the $2^{\text {nd }}$-order linear recursion relation

$$
a_{n}=6 a_{n-1}-5 a_{n-2}, \quad \text { for } n \geqslant 2, \quad \text { with } a_{0}=0, a_{1}=4
$$

Take $P(n): a_{n}=5^{n}-1$. Then $\forall n \in \mathbb{N}, P(n)$ (use strong mathematical induction).
Basis step:

$$
\begin{array}{ll}
P(0) \text { says } & a_{0}=5^{0}-1=1-1=0 \\
P(1) \text { says } & a_{1}=5^{\prime}-1=5-1=4
\end{array}
$$

Induction step: Now assume $P(0), P(1), \ldots, P(k)$ all hold for $k \geq 1$. So $k+1 \geq 2$, so by $I t$

$$
\left\{\begin{aligned}
a_{k+1} & =6 a_{k}-5 a_{k-1} \\
& =6\left(5^{k}-1\right)-5\left(5^{k-1}-1\right) \\
& =5^{k} \cdot 5-5^{k}-1
\end{aligned}\right.
$$

2. Use strong mathematical induction to show the product of n numbers requires $n-1$ multiplications, regardless of grouping.
$P(n)$: If you wist to multiply n numbers, you'll need $n-1$ multiplications (flops). Basis step: $P(1)$ says you dart need any multiplications.
Inductions step: Assume we have $k+1$ numbers, w/ $k \geq 1$.
Inductive hyp: $P(1), P(2), \cdots, P(6)$ told.

$$
\begin{aligned}
& \underbrace{\left(a_{1} \cdot a_{2} \cdots a_{m}\right.}_{\text {contains m nos. }} \cdot(\underbrace{}_{\text {contains } k-m+1} \cdot \frac{a_{m+1} \cdots a_{k+1}}{}) \\
& w / m \geq 1 \quad \text { Note } k-m+1 \leq k \\
& q \\
& \text { - enquires } m-1 \\
& \text { multiplocs, by IH } \\
& \text { requires } k-m \quad \longrightarrow(m-1)+(k-m)+1 \\
& \text { multiplies by It } \\
& =k \text { multiplies }
\end{aligned}
$$

