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Discrete Mathematics
Fall 2021
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Topic:: Induction
Topic:: Strong induction
Read:: Rosen 5.2
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Mathematical induction can be expressed as the rule of inference

(P(1) A Vk € Z*, (P(k) — P(k + 1)) — Vn e Z*, P(n). 4 =7 2-23

Example 1: Fundamental Theorem of Arithmetic

Every integer n > 2 is a prime or can be written as the product of primes (usesste

e e ?{k)? \l\ s \pv';bvu., 1y '\/\M— f"""l’“‘i— "g fimes.

Note: A prime number is a positive integer greater than 1 that has no positive (integer) factors
besides 1 and itself.
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Induction, as described above, is inadequate.

Consider this modified version:
(P(1) AVke Zt,(P(1) APQ2) A --- AP(k) - P(k+1))) — Vne Z*, P(n).
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% - 3+5S
Example 2:
1= 3(2)
For any n > 8, n cents can be obtained using 3¢ and 5¢ coins. o c 2(S )

o= 2(3)+S = §+3
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A generalization (equally valid form) of mathematical induction.

Definition 1 (Principle of Strong Mathematical Induction): Let P(n) be a property that is
defined for integers n, and let a, b be fixed integers with 2 < b. Suppose the following
statements are true:

sy 1. P(a), P(a+1),..., P(b) are all true (basis step).
CJ‘/ 2. For any integer k > b, if P(i) is true for all integers i from a through k, then P(k + 1) is
true (inductive step). fa\ A T(QH\ A ?(ufl) A--n T
Then the statement “for all integers n > a, P(n)” is true. 7 Pl )

The supposition that P(i) is true for all integers i from a through k in number 2 above is designated

as the inductive hypothesis in this form of induction.
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We have two equivalent notions of induction. A third notion that looks different but is nonetheless
equivalent is the Well-Ordering principle.
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Definition 2 (Well-Ordering Principle): Suppose A € IN. Then A has a smallest element.

Thatis, 3a € A such that Vb e A, (a < D).

Note that the set {positive real numbers} does not have a smallest element, but that this does not
violate the well-ordering principle.
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1. Letag,a1,az,... be the sequence defined by the 2nd_order linear recursion relation

a, = 6a,_1—b5a,_», forn=2, withay=0, a4 =4.

Take P(n): a, = 5" — 1. Then VYn € N, P(n) (use strong mathematical induction).
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2. Use strong mathematical induction to show the product of n numbers requires n — 1 multi-
plications, regardless of grouping.
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