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MATH 251 Notes

We have two equivalent notions of induction. A third notion that looks different but is nonetheless
equivalent is the Well-Ordering principle.

A L A ALA +
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Definition 2 (Well-Ordering Principle): Suppose A € IN. Then A has a smallest element.
Thatis, 3a € A such that Vb e A, (a < D).

Note that the set {positive real numbers} does not have a smallest element, but that this does not
violate the well-ordering principle.
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3. A simple polygon with n > 3 sides can be triangulated into n — 2 triangles (use strong
Q\L‘K mathematical induction, and the fact that every simple polygon with at least four sides has

an interior diagonal).
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4. Given any integer n and any positive integer d, there exist integers(&nd uchthatn = dg+r
and 0 < r < d (use the well-ordering principle).
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Examples of recursive definitions

1. arithmetic and geometric sequences
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2. Fibonacci numbers
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3.a0=1,anda, =n=*a,_1 for ne Z*

int function fact(int n)
if n==0return 1
else return nxfact(n—1)

4. Define the set W as follows: w = ([T F ’f ‘z - %
] / / ¢

basis step: T, F, and p, where p is a propositional variable, are in ‘W.

recursive step: If E, F € ‘W then each of (—E), (EAF), (EVF), (E — F),and (E < F)

are in W. (() A N
Call W the set of well-formed formulae in proposi,fional lggic. Why are Apgand — Ap v g
not well-formed?

5. Consider set S of strings formed this way:

basis step: the letter a is a string in S recursive step: for each x € S, ax and xb
arein S.
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6. Take X be some set of allowable characters. Define A to be the empty string, the string
containing no characters. We can think of the set Z* of strings over the alphabet L as
defined inductively:

¥ e
basis step: A € L* 2 - lz )(

recursive step: If w € Z* and x € L, then wx € I*.
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7. Define the length function for inputs from L* recursively:

basis step: {(A) =0 (length of empty string)
recursive step: For w € X* and x € £, {(wx) = {(w) + 1. (Here wx is the
concatenation of w followed by x.)

8. Consider the Cantor middle-thirds set defined recursively as

basis step: Start with the full interval of real numbers Co = [0,1] = {x|0 < x < 1}.
recursive step: For each unbroken subinterval I still in C,,, divide I into three parts
of equal length: I = [a,b] U (b,c) U [c,d], and include only [a,b] U [c,d] in Cppy1.

9. We define recursively various collections of rooted trees. Let the set R be defined as follows:

basis step: A single vertexr e R.

recursive step: Suppose T1,T»,...T, € R are disjoint having roots ry,...,7,, re-
spectively. The graph formed by taking as root a vertex r not in any of Ty, ..., Ty,
and adding an edge from r to each of the vertices r1, ..., r, is also in R. Call the
resulting tree T1 - T - - - T),.
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