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Math 251, Fri 22-0Oct-2021 -- Fri 22-0ct-2021
Discrete Mathematics
Fall 2021

Wk 8, Fr

Topic:: Structural induction
Read:: Rosen 5.3
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Examples of recursive definitions

7. Take L to be an alphabet, and X* to be the strings over the alphabet X, with empty string A.
Define the length function for inputs from I* recursively:

basis step: {(A) =0 (length of empty string)
recursive step: For w € X* and x € X, {(wx) = {(w) + 1. (Here wx is the
concatenation of w followed by x.)
Claim: For w, z € ¥, {(wz) = {(w) + £(z).
Prove using structural induction, a technique for demonstrating properties that hold for
elements of a recursively-defined set.

Definition 1: In structural induction, one shows

basis step: the result holds for all elements specified in the basis step of the
recursive definition for the set.

'w\\w()@ step: if the statement is true for each element used to construct
new elements in the recursive step of the definition, then the result holds
for these new elements.
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9. We define recursively various collections of rooted trees. Let the set R be defined as follows:

basis step: A single vertexr e R.

recursive step: Suppose T1,T»,...T, € R are disjoint having roots ry,...,7,, re-
spectively. The graph formed by taking as root a vertex r not in any of Ty, ..., Ty,
and adding an edge from r to each of the vertices r1, ..., r, is also in R. Call the
resulting tree Ty - To - - - T),.

Let the set & be defined as follows:

basis step: The empty setis in &.

recursive step: Suppose T and T, € & are disjoint. The graph T; - T> formed by
taking as root a vertex r not in either Ty, nor T, and adding an edge from  to each
of the roots of Ty, T> (when they are nonempty) is in &.

Let the set ¥ be defined as follows:

basis step: A single vertex risin .

recursive step: Suppose T1 and T, € ¥ are disjoint. The graph formed by taking
as root a vertex r not in either Ty, nor T, and adding an edge from r to each of the
roots of Ty, Tp is in F.

What differences between the types of trees found in R, &, and F7?
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10. For the entries of ¥ defined above, we define a height function recursively:

basis step: If the tree T consists only of a root, then h(T) = 0.
recursive step: For trees Ty and T € 7, h(T1 - T2) = 1 + max(h(Ty), h(T7)).

11. For the entries of # defined above, we define the set of leaves recursively:

basis step: If the tree T consists only of a root r, then L(T) = {r}.
recursive step: Given trees T1 and T> € F, L(Ty - T2) = L(Ty) u L(T2).

12. For the entries of ¥ defined above, we define the set of internal vertices recursively:
basis step: If the tree T consists only of a root, then I(T) = @.
recursive step: Given trees Ty and T € F, I(Ty - T2) = {r} v I(T1) u I(T2), where r
is the root of T1 - T5.
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