Math 251, Fri 22-Oct-2021 -- Fri 22-Oct-2021
Discrete Mathematics
Fall 2021

Friday, October 22nd 2021

Wk 8, Fr
Topic:: Structural induction
Read:: Rosen 5.3

For a stones, sum of products

is

$$
\begin{aligned}
& n(n-1) \\
& \frac{(n-1)}{2} \text {. } \\
& 4 \cdot 1=4 \\
& 3 \cdot 1=3 \\
& 2 \cdot 1=2 \\
& 1.1=\frac{1}{10}
\end{aligned}
$$

$$
5.3 \text { recursive definitions and structure induction }
$$

Examples of recursive definitions

7. Take Σ to be an alphabet, and Σ^{*} to be the strings over the alphabet Σ, with empty string λ.

Define the length function for inputs from Σ^{*} recursively:
basis step: $\ell(\lambda)=0$ (length of empty string)
recursive step: For $w \in \Sigma^{*}$ and $x \in \Sigma, \quad \ell(w x)=\ell(w)+1 . \quad$ (Here $w x$ is the concatenation of w followed by x.)
Claim: For $w, z \in \Sigma^{*}, \ell(w z)=\ell(w)+\ell(z)$.
Prove using structural induction, a technique for demonstrating properties that hold for elements of a recursively-defined set.

Definition 1: In structural induction, one shows

basis step: the result holds for all elements specified in the basis step of the recursive definition for the set.
 new elements in the recursive step of the definition, then the result holds for these new elements.

Prose
statements
that apply to objects
deformed

9. We define recursively various collections of rooted trees. Let the set \mathcal{R} be defined as follows:
basis step: A single vertex $r \in \mathcal{R}$.
recursive step: Suppose $T_{1}, T_{2}, \ldots T_{n} \in \mathcal{R}$ are disjoint having roots r_{1}, \ldots, r_{n}, respectively. The graph formed by taking as root a vertex r not in any of T_{1}, \ldots, T_{n}, and adding an edge from r to each of the vertices r_{1}, \ldots, r_{n} is also in \mathcal{R}. Call the resulting tree $T_{1} \cdot T_{2} \cdots T_{n}$.

Let the set \mathcal{E} be defined as follows:
basis step: The empty set is in \mathcal{E}.
recursive step: Suppose T_{1} and $T_{2} \in \mathcal{E}$ are disjoint. The graph $T_{1} \cdot T_{2}$ formed by taking as root a vertex r not in either T_{1}, nor T_{2}, and adding an edge from r to each of the roots of T_{1}, T_{2} (when they are nonempty) is in \mathcal{E}.

Let the set \mathcal{F} be defined as follows:
basis step: A single vertex r is in \mathcal{F}.
recursive step: Suppose T_{1} and $T_{2} \in \mathcal{F}$ are disjoint. The graph formed by taking as root a vertex r not in either T_{1}, nor T_{2}, and adding an edge from r to each of the roots of T_{1}, T_{2} is in \mathcal{F}.

What differences between the types of trees found in \mathcal{R}, \mathcal{E}, and \mathcal{F} ?
10. For the entries of \mathcal{F} defined above, we define a height function recursively:
basis step: If the tree T consists only of a root, then $h(T)=0$.
recursive step: For trees T_{1} and $T_{2} \in \mathcal{F}, h\left(T_{1} \cdot T_{2}\right)=1+\max \left(h\left(T_{1}\right), h\left(T_{2}\right)\right)$.
11. For the entries of \mathcal{F} defined above, we define the set of leaves recursively:
basis step: If the tree T consists only of a root r, then $L(T)=\{r\}$.
recursive step: Given trees T_{1} and $T_{2} \in \mathcal{F}, L\left(T_{1} \cdot T_{2}\right)=L\left(T_{1}\right) \cup L\left(T_{2}\right)$.
12. For the entries of \mathcal{F} defined above, we define the set of internal vertices recursively:
basis step: If the tree T consists only of a root, then $I(T)=\varnothing$.
recursive step: Given trees T_{1} and $T_{2} \in \mathcal{F}, I\left(T_{1} \cdot T_{2}\right)=\{r\} \cup I\left(T_{1}\right) \cup I\left(T_{2}\right)$, where r is the root of $T_{1} \cdot T_{2}$.

$$
n(T)=\text { en vertices of } T=|L(T)|+|I(T)|
$$

Theorem: If $T \in F$, then $n(T) \leq 2^{h(T)+1}-1$.

$$
P(T): n(T) \leq 2^{h(T)+1}-1 .
$$

Use structural induction, since the objects involved were defied recursively.
bases sty: $P(\underset{\sim}{0})$ holds
elmunts $\cdot 5$
A simple vortex bivereng tree T has

$$
\begin{aligned}
& n(T)=1 \\
& h(T)=0
\end{aligned} \quad \text { so } \quad n(T)=1 \leq 2^{0+1}-1
$$

induction stop

$$
\begin{aligned}
& P(k) \rightarrow P(k+1) \quad \text { with induction } \\
& P(1) \wedge P(2) \wedge \ldots \wedge P(k) \underbrace{\rightarrow P(k+1) \text { strong influctiong }}_{\text {birth assize inputs to } P \text { are intyons. }}
\end{aligned}
$$

So, in structure induction we look at formation if a new free in recursive step deffinioy F, we assume inputs (trees T_{1}, T_{2}) satisfy our clem, then show the new contraction $\left(T_{1}, T_{2}\right)$ also satristers it.

Assume (for the induction stop) that our input trees T_{1}, T_{2} have vertex counts and heights satisfying the chirm

$$
\begin{aligned}
& n\left(T_{1}\right) \leq 2^{n\left(T_{1}\right)+1}-1 \\
& n\left(T_{2}\right) \leq 2^{n\left(T_{2}\right)+1}-1 .
\end{aligned}
$$

Now look at the new tree joining T_{1}, T_{2}

$$
\begin{aligned}
& n\left(T, T_{2}\right)=1+n\left(T_{1}\right)+n\left(T_{2}\right) \\
& \leq K+\left[2^{h\left(T_{1}\right)+1}-1\right]+\left[2^{h\left(T_{2}\right)+1}-1\right] \\
&=2^{h\left(T_{1}\right)+1}+2^{h\left(T_{2}\right)+1}-1 \\
& \leq 2 \cdot \max \left(2^{h\left(T_{1}\right)+1}, 2^{h\left(T_{2}\right)+1}\right)-1 \\
&=2 \cdot \underbrace{\max \left(h\left(T_{1}\right), h\left(T_{2}\right)\right)+1}-1 \\
&=2 \cdot 2^{h\left(T_{1} \cdot T_{2}\right)}-1-1 \\
&=\underbrace{h\left(T_{1} \cdot T_{2}\right)+1}-1 \\
& \text { So } \quad n\left(T_{1} \cdot T_{2}\right) \leq 2^{h\left(T_{1} \cdot T_{2}\right)+1}
\end{aligned}
$$

