Math 251, Mon 25-Oct-2021 -- Mon 25-Oct-2021
Discrete Mathematics
Fall 2021

Monday, October 25th 2021

Wk 9, Mo
Topic:: Time spent on HW problems
[[notes/lect280ct19.pdf
Read:: Rosen 5.3
HW: Yodle Quiz Chs. 5 ends Wed.
HW[[PS12 due Fri.

Coverage:
Chap 2: Sections 4-5
Chap 3: Sections $1-3$
Chap 5: Sections 1-2

Supplied Formulas for Test 2

For an arithmetic sequence, $a_{0}, a_{1}, a_{2}, \ldots$, the sum of the first $n+1$ terms

$$
a_{0}+a_{1}+\cdots+a_{n}=(n+1) \frac{a_{0}+a_{n}}{2}
$$

For a geometric sequence, $a_{0}, a_{0} r, a_{0} r^{2}, \ldots$, the sum of the first $n+1$ terms

$$
a_{0}+a_{0} r+\cdots+a_{0} r^{n}=a_{0} \frac{1-r^{n+1}}{1-r}
$$

The sum of all infinitely-many terms exists only when $|r|<1$, in which case it is

$$
a_{0}+a_{0} r+\cdots+a_{0} r^{n}+\cdots=a_{0} \frac{1}{1-r}
$$

If you think of others, feel free to ask.
The default Grower: No.

$$
\text { Tess: } \left.\begin{array}{rlr}
\text { Ch. } 2 & \text { Sections } & 2.4-2.5 \\
& C_{h .3} & \text { Sections } \\
\text { Ch. } 5 & \text { Sections } & 5.1-3.3
\end{array}\right\}
$$

Problem examples

- from these textbook sections
- Webluork
- Quiz questions
5.2.2 $P(n)$ - the $n^{\text {th }}$ douses falls

Show: $x_{n} \in \mathbb{Z}^{+} P(n)$
In parkin statement you learn $P(1), P(2), P(3)$ hold.
basis step: $P(1), P(2), P(3)$ hall (given)
strong induction stop: Assume, for some $k \geq 3$

$$
P(1) \wedge p(2) \wedge \cdots \wedge P(k) \text { hold. }
$$

Now to show $P(k+1)$, note that $P(k-2)$ hos $1 s$ since $k \geq 3$; by the induction hypothesis, and problem statement tells as

$$
P(n) \rightarrow P(n+3)
$$

Thus, $P(k-2) \rightarrow P(k+1)$. So $\not \forall_{n}, P(n)$,
Prior couple
34,50 coins
$P(n)$: Con make n cents as combination of $m(3)+l(5)$.

$$
\forall n \in\{8,9,10, \ldots\}, P(n) .
$$

Asquint
basis step: $P(8)=5+3$

$$
\begin{aligned}
& P(9)=3(3) \\
& P(10)=2(5)
\end{aligned}
$$

Strong
Induction step: Suppose for some $k \geq 10, \quad P(8) \sim P(9) \wedge \ldots P(k)$ holds.
Show $P(k+1)$
We have $P(k-2)$ in ow IH.

So

$$
k-2=m(3)+l(5)
$$

Thus

$$
\begin{aligned}
k+1 & =3+m(3)+l(5) \\
& =(m+1)(3)+l(5), \text { proving } P(h+1) \text { holds. }
\end{aligned}
$$

Math induction

$$
P(a) \wedge \quad \forall k,(P(k) \rightarrow P(k+1)) \rightarrow \forall k \geq a, P(k)
$$

bus are

Strong induction
ladder mug a

$$
P(a) \wedge \not \forall k(P(a) \wedge P(a+1) \wedge \ldots \wedge P(k)) \rightarrow \forall k \geq a P(k)
$$

Example form: $P(n)$ says n is prime or the product. fe primes

$$
P_{\text {rove }} \quad \forall n \geq 2, P(n)
$$

bass step: $P(2)$
induction step: Assume k integer $w / k \geq 2$ and

$$
P(2) \wedge P(3) \wedge \ldots \wedge P(k)
$$

may only be $P(2)$.
Now show $P(k+1)=$
$k+1$ may be a prime. If ss, $p(k+1)$ holds.
Bat if it isn't, $k+1=p q \quad w / p, q$ both in $\{2, \ldots, k\}$.
$P(p)$ and $P(q)$ hold -

$$
\left.\begin{array}{l}
p=p_{1} p_{2} \cdots p_{m} \\
q=q_{1} q_{2} \cdots q_{l}
\end{array}\right\} \quad \rightarrow \quad k+1=\left(p_{1} \cdots p_{m}\right)\left(q_{1} \cdots q_{l}\right) .
$$

$O(1)$ before $O(\log x)$

$$
\begin{gathered}
\because \\
O\left((\log x)^{2}\right) \\
O\left((\log x)^{3}\right) \\
\vdots \\
\because \\
\because \\
O(x) \\
O(x \log x) \\
O\left(x(\log x)^{2}\right)
\end{gathered}
$$

$$
2^{x}
$$

$$
\begin{gathered}
x^{2}+2 x^{3} \log x-(\log x)^{10} \\
\text { is } O\left(x^{3} \log x\right) \\
O\left(x^{4}\right)
\end{gathered}
$$

$$
2.1^{x}
$$

$$
3^{x}
$$

Prove: $\quad x^{2}+3 x$ is $\Theta\left(x^{2}\right)$
Requite i) $x^{2}+3 x$ is $O\left(x^{2}\right)$
2) $x^{2}+3 x$ is $\Omega\left(x^{2}\right)$ or alternatively, show x^{2} is $V\left(x^{2}+3 x\right)$

Prove: x^{2} is not $O(x)$.
Do by contradiction.
Assume the opposite, namely that x^{2} is $B(x)$.
Them, by definition, this means there are witnesses $C, k>0$ such that

$$
\left|x^{2}\right| \leq C|x| \quad \text { for } x \geq k
$$

when one has witnesses in hand, it is possible to replace either C or k with an even higher number to get another valid pair of witnesses. Based on that fact, assume that $C>k$.
Abs. ovals unnecessary for $x>k>0$.

$$
x^{2} \leq C_{x} \quad \rightarrow \quad x \leq C
$$

So, the contradiction con be summarized like this:
If se take $x_{0}=C+1$ which is a number satisfying $x_{0}>k$, it should be that

$$
x_{0}^{2} \leq C x_{0}, \quad \text { or } \quad(C+1)^{2} \leq C(C+1)
$$

But the is not so, since it implies $C+1<C$, which is not so. what led to this contradiction is the original assumption that x^{2} is $O(x)$, which must then be false.
$12: 30$ section
Ex. of Big Oh question:
Easy: Is $x^{2}-x(\log x)^{2}+x^{2} \log x \quad \theta\left(x^{2}\right)$? ND
Harder: Show $3 x^{2}+2 x+7$ is $\Theta\left(x^{2}\right)$.
Du it from the definition - produce witnesses.

1. Nos $3 x^{2}+2 x+7$ is $O\left(x^{2}\right)$
2. Shew $3 x^{2}+2 x+7$ is $\Omega\left(x^{2}\right)$

$$
\left(\text { or, show } x^{2} \text { is } 0\left(3 x^{2}+2 x+7\right)\right) \text {. }
$$

1^{*} Task:

$$
\left|3 x^{2}+2 x+7\right|=3 x^{2}+2 x+7 \leq 3 x^{2}+2 x^{2}+7 x^{2}=12 x^{2}
$$

Witnesses $k=1, C=12$, Task 1 complete,
for turk?
$2^{\text {n }}$ tack:
T. get x^{2} is $0\left(3 x^{2}+2 x+7\right)$, note

$$
\left|x^{2}\right|_{x>0} x^{2} \leq\left(3 x^{2}+2 x+7\right)
$$

witnesses: $k=0, c=1 \quad$ (for task 2)
So, witnesses to θ relationship

$$
C_{1}\left|x^{2}\right| \leq\left|3 x^{2}+2 x+7\right| \leq C_{2}\left|x^{2}\right| \quad \text { for } x \geq k
$$

are

$$
C_{1}=\frac{1}{1}, \quad c_{2}=12, \quad k=1
$$

Rebounting balls

Book prollem incluaded all (intaritily meng) reboums

Falls orginally h

$$
\begin{aligned}
&+2 h r \\
&+2 h_{r}^{2} \\
&+2 h r^{3} \\
&+\cdots \\
&=(\underbrace{\left(h+h r+h r^{2}+\cdots\right)}_{\text {down }}+(\underbrace{h_{r}+h_{r}^{2}+\cdots}_{n p^{s}} \\
&=h\left(1+r+r^{2}+\cdots\right)+h r\left(1+r+r^{2}+\ldots\right) \\
&=h \cdot \frac{1}{1-r}+h r \cdot \frac{1}{1-r}
\end{aligned}
$$

$$
a_{0}+a_{0} r+a_{0} r^{2}+\cdots+a_{0} r^{n-1}=\left(\frac{1-r^{n}}{1-r}\right) a_{0}
$$

5.2 .8

$$
\begin{aligned}
& 25=1(25)+0(40) \\
& 40=0(25)+1(40) \\
& 50=2(25)+0(40) \\
& 65=1(25)+1(40) \\
& 75=3(25) \\
& 80=2(40) \\
& 90=2(25)+1(40)
\end{aligned} \quad\left\{\begin{array}{l}
140=4(25)+40 \\
145=1(25)+3(40) \\
150=6(25) \\
155=3(25)+2(40) \\
160=4(40) \\
165
\end{array}\right\}
$$

$P(n)$: Con produce $5 n$ dollors using $\$ 25, \$ 40$ denominations
We can prove: $\forall n \in\{28,29, \ldots\}, P(n)$.
basis step: $P(28), P(29), P(30), P(31), P(32)$
induction strap: Assume (for strong induction) the, for some $k \geq 32$,

$$
P(28) \wedge p(29) \wedge \ldots \wedge P(k) \text { holds }
$$

To show $P(k+1)$, note that $P(k-4)$ is assuncel in my induction hypothesis (since $k \geq 32$). So

$$
5(k-4)=(\text { some number of } 125)+\left(\text { some nu of } \mathbb{4} 4_{0}\right)
$$

Thus $\quad 5(k+1)=\left(\begin{array}{cc}\text { anganat } & 0 / \text { one more } \\ 125\end{array}\right)+\binom{$ sum e no of }{$\$ 40}$

$$
\text { provs } P(k+1) \text {. }
$$

