Math 251, Fri 29-Oct-2021 -- Fri 29-Oct-2021
Discrete Mathematics
Fall 2021

Friday, October 29th 2021

Wk 9, Fr
Topic:: Structural induction
Read: : Rosen 5.3
HW: : PS08 due Tues.

Suppose, previously, a recursive definition R has been used to define objects.
Let S be a statement about elements defined by R.

If
 (i) S is True for every element b_{1}, \ldots, b_{m} in the base case of definition R, and

(ii) whenever elements e_{1}, \ldots, e_{n}, about which the statement S is true, are used to construct a new element
E via the recursive step in R, statement S also holds for this constructed element E (that is, if S holds
for e_{1}, \ldots, e_{n} then S holds for E).
then we conclude S is true for all elements built using recursive definition R.

Observe:

$$
P(k) \rightarrow P(k+1) \quad \Gamma^{\longrightarrow} P(a) \wedge P(a+1)(\ldots n P(k) \rightarrow P(k+1)
$$

- Mathematical and strong induction require predicate statements which change with integer inputs. Structural induction carries the key idea of previous induction types to things like lists, strings, trees, ..., data structures.
- the basis step and induction steps in structural induction mirror the base cases and recursive step in the corresponding recursive definition.

Examples

1. Consider this recursive definition R :
($\begin{aligned} & \text { base case: the empty expression } \lambda \\ & \text { recursive }\end{aligned}$
recursive step:
$S \bullet$ Given an already-admitted expression S, admit (S) () ())
$\left\{\right.$ - Given two already-admitted expressions S_{1}, S_{2}, admit $S_{1} S_{2} \quad \lambda \lambda \quad()()$
For each S defined through R, let
$c(S)=($ number of left parentheses in $S)-($ number of right parentheses in $S)$
Claim: $\forall S, c(S)=0$.
(i) show $c(\lambda)=0 \quad$ (self-civident, $0-0=0$)
(ii) To take. care of first bullet point

Given $C(S)=0$, need to show (unless self evident) $\quad((S))=0$.
To take care of $2^{n d}$ bullet
Given that $C\left(S_{1}\right)=0$ and $C\left(S_{2}\right)=0$,
show (unless self-evident) $\quad C\left(S_{1} S_{2}\right)=0$.
2. Consider this recursive definition R defining a class of strings:

base case:

\downarrow

- admit empty string $\lambda\}$
- admit the string $a a b$
recursive step: Given already-admitted strings $w_{1}, w_{2}, \ldots, w_{n}$, admit the concatemated string $w_{1} w_{2} \cdots w_{n}$
aabaalo
Suggest and prove some claims using structural induction. $a a b a a b a a b a b a a b$

1. length of any string is divisible by 3 .
(i) true for λ, aa
(ii) Every one of $w_{1}, w_{2}, \ldots, w_{n}$ has length divisible by $3 \xrightarrow{\text { salf-ur. int }}$ so does $w_{1} w_{2} \ldots w_{h}$ 2. \# of a^{\prime} 's in a strong $=2$ (\# of $b^{\prime} s$).
2. No word with side-ly-side b characters.
3. Consider a different collection of strings, defined by
base case: admit the string a
recursive step: Given an already-admitted string S, admit $a S b$.

$$
a a b
$$

Suggest and prove some claims using structural induction.

$$
\text { Claim: \# of b's in a strong }=(\# \text { 估 } \text { os in string })-1
$$

o-aabo
sacco bt
4. Consider this recursive construction of polynomials.
base case: $1, x$
recursive step:
$\rightarrow \bullet$ Given an already-admitted polynomials p, q, admit $p+q, p q$

$$
1+x
$$

$\longrightarrow \bullet$ Given an already-admitted polynomial p, and $c \in \mathbb{R}$, admit $c p$
Claim: Every power of x is a nonnegative integer

$$
3 x^{\frac{1}{-}}-2 x^{2}+17 x^{0}
$$

5. Define a doubly-subscripted sequence $a_{m, n}$ recursively this way. base case: $a_{0,0}=0$ recursive step:

- For $m \geqslant 1$, let $a_{m, 0}=1+a_{m-1,0}$
- For $n \geqslant 1$, let $a_{m, n}=n+a_{m, n-1}$

Claim: $a_{m, n}=m+n(n+1) / 2$

(i) Does $a_{0,0}$ (which is given tobe 0) equal $0+O(0+s) / 2$?
(ii) Need to hand la both bullet points.

For the first, can assume $a_{m-1,0}=m-1+0(0+1) / 2=m-1$.
Need to show that the new term $a_{m, 0}$ from $a_{m-1,0}$ also fits this.

$$
\begin{aligned}
K_{\text {now: }} \quad a_{m, 0} & =1+a_{m-1,0}=1+(m-1)=m \\
& \stackrel{?}{=} m+0(0+1) / 2
\end{aligned}
$$

For the second bullet,
Cam assume $a_{m, n-1}$ is found according to my elesmed formate

$$
a_{m, n-1}=m+(n-1)(n-1+1) / 2=m+\frac{n(n-1)}{2}
$$

Must show $a_{m, n}$ fits the formula.
$K_{\text {now }}$

$$
\begin{aligned}
a_{m, n} & =n+a_{m, n-1} \\
& =n+m+\frac{n(n-1)}{2} \\
& =m+n+\frac{1}{2} n^{2}-\frac{1}{2} n \\
& =m+\frac{1}{2} n^{2}+\frac{1}{2} n=m+\frac{n^{2}+n}{2} \\
& =m+\frac{n(n+1)}{2}
\end{aligned}
$$

