Math 251, Mon 1-Nov-2021 -- Mon 1-Nov-2021
Discrete Mathematics
Fall 2021

Monday, November 1st 2021

Wk 10, Mo
Topic:: Solving linear homogeneous recurrences
Read:: Rosen 8.2A

```
Chs. 8
    8.1 Mofration
    8.2 Solution methods
    8.3 Master Theorem
Ch. 4
    \(4.1-4.6\)
```


Linear homogeneous recurrences

specificil constants

A linear homogeneous recurrence relation of degree k with constant coefficients has the form

Examples and non-examples:

1. $a_{n}=a_{n-1}+d$ not a fit to our form since d-tarm present extrod'term is a nonhomogucous term
2. $a_{n}=r a_{n-1}$ is linear, homogereous, degrec 1
3. $f_{n}=f_{n-1}+f_{n-2}$ is linear, homoq., degrec 2
4. $w_{n}=2 w_{n-1}+w_{n-5}$ is linear, howog., degree 5
5. $C_{n}=C_{0} C_{n-1}+C_{1} C_{n-2}+\cdots+C_{n-1} C_{0}$ is not linear (multiplications sccur between unknowns)
6. $a_{n}=2 a_{n-1}+2 a_{n-2}+\underbrace{3^{n-2}}_{\text {nowhomog. }}$ is linear, nan-homogenesus

Solution method: term

- Assume each member $a_{0}, a_{1}, \ldots, a_{n}$ of the sequence that solves has the form r^{k}-that is, $a_{0}=r^{0}, a_{1}=r, \ldots, a_{n}=r^{n}$, and so on. Substitute these values into the recurrence.
- Solve the resulting characteristic equation for roots r. For a degree k recurrence, there will be k roots.
- Take an appropriate weighted combination of solutions, and use initial conditions to determine the weights.

Examples:

1. Solve $a_{n}=a_{n-1}+2 a_{n-2}, \quad a_{0}=1, a_{1}=8$
2. Solve $f_{n}=f_{n-1}+f_{n-2}, \quad f_{0}=0, f_{1}=1$

Facts (focus on 2nd degree problems when stating):
a) Eqn (**) has k=2 roots (counting multiplicities, complex number roots)
b) For each root $r=r_{-}\{1,2\}$, the sequence a_n $=r_{-}{ }^{\wedge} n$ satisfies the recurrence relation (*)
c) linear combinations of solutions to (*) again solve (*)
a_n = alpha_1 r_1^n + alpha_2 r_2^n
d) if the roots of (**) are distinct, then all solutions of (*) look like a_n = alpha_1 r_1^n + alpha_2 r_2^n
if there is a repeated root, the solutions look like a_n = (alpha_1 + alpha_2 n) r^n
e) If our recurrence relation comes with a full contingent of ICs, then there is one and only one choice of alpha_j's so that these are also met.
initial conditions

$$
1 . a_{n}=a_{n-1}+2 a_{n-2}
$$

$$
a_{0}=1, \quad a_{1}=8
$$

- Given $a_{n}=r^{n}$, insert into

$$
a_{n}=a_{n-1}+2 a_{n-2} \quad \text { so it becomes } r^{n}=r^{n-1}+2 r^{n-2}
$$

Algebraically, this can be rearranged

$$
r^{n}-r^{n-1}-2 r^{n-2}=0 \quad \text { or } \quad r^{n-2}\left(r^{2}-r-2\right)=0
$$

Since their product is 0 , either

$$
\underbrace{r^{n-2}=0}_{\substack{\text { uninteresting } \\
\text { not useful }}} \quad \text { or } \quad \frac{r^{2}-r-2=0}{\begin{array}{c}
\text { important -call it "characteristic eq" } \\
\text { "chan }
\end{array}}
$$

- $r^{2}-r-2=0$
by factoring get $(r-2)(r+1)=0 \rightarrow$ roots $r=-1,2$
Note: characteristic polynomial $r^{2}-r-2$ is degree 2 and we wind up w) 2 roots.
Each root generates, through assumption $a_{n}=r^{n}$, a sequence

$$
\begin{array}{ccccccc}
r=-1 & \frac{r^{0}}{1} & \frac{r^{1}}{-1} & \frac{r^{2}}{1} & \frac{r^{3}}{-1} & \frac{r^{4}}{1} & \cdots \\
r=2 & 1 & 2 & 4 & 8 & 16 & \cdots
\end{array}
$$

and both sequences satisfy the recurrence relation.

$$
a_{n}=\alpha_{1}(-1)^{n}+\alpha_{2}(2)^{n}
$$

α_{1}, α_{2} are weights as-yet-unknown - use initial conditions to fond them ITs
$a_{0}=1 \quad$ but weighted formula says $a_{0}=\alpha_{1}(-1)^{0}+\alpha_{2}(2)^{b}$
Equating these, $\quad 1=\alpha_{1}+\alpha_{2}$
$a_{1}=8$. but also $\quad a_{1}=\alpha_{1}(-1)^{\prime}+\alpha_{2}(2)^{\prime}$
Equation: $-\alpha_{1}+2 \alpha_{2}=8$
Have 2 ques in unknowns α_{1}, α_{2}

$$
\begin{aligned}
\alpha_{1}+\alpha_{2} & =1 \\
-\alpha_{1}+2 \alpha_{2} & =8 \\
\hline 3 \alpha_{2} & =9
\end{aligned} \quad \begin{aligned}
& \alpha_{2}=3 \\
& \alpha_{1}=-2
\end{aligned}
$$

Now we have arrived at a sola. to both
The recurrence, ant
ITs

$$
a_{n}=-2(-1)^{n}+3(2)^{n}
$$

2. $f_{n}=f_{n-1}+f_{n-2}, \quad f_{0}=0, f_{1}=1$

- Assume $f_{n}=r^{n}, n=0,1,2, \ldots$, then substitute info recurrence

$$
\begin{aligned}
r^{n}=r^{n-1}+r^{n-2} & \rightarrow r^{n}-r^{n-1}-r^{n-2}=0 \\
& \rightarrow r^{n-2}(\underbrace{r^{2}-r-1}_{\text {cher. polgamial }})=0
\end{aligned}
$$

- Solve char. eqn

$$
r^{2}-r-1=0
$$

Quadratic formula
Solus. to $a x^{2}+b x+c=0$

$$
x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

Applying quad. Formula

$$
r=\frac{1}{2} \pm \frac{\sqrt{(-1)^{2}-4(1)(-1)}}{2}=\frac{1 \pm \sqrt{5}}{2}
$$

$$
\begin{aligned}
& \begin{array}{ccccccc}
& r^{\circ} & r^{\prime} & r^{2} & r^{3} & \cdots \\
\frac{1+\sqrt{5}}{2} & 1 & 1.618 & 2.618 & 4.236 & 6.854 & \cdots
\end{array} \\
& \frac{1-\sqrt{5}}{2}: 1 \quad-0.618 \quad 0.382 \quad-0.2361 \quad 0.1459 \cdots \\
& \text { Both satisfy the recarrace relation. }
\end{aligned}
$$ Nether looks like the Fibonacci sequence.

