Math 251, Mon 8-Nov-2021 -- Mon 8-Nov-2021
Discrete Mathematics
Fall 2021

Monday, November 8th 2021

Wk 11, Mo
Topic:: Recurrences

Chi, Section 2, $1^{\text {st }}$ half has been
covered so for, providing a method for solving linear, hrmogneous, kn degree recurrence relations with constant coifs.

Read:: Rosen 8.1
Counting problems:

- various things like _nP_r, _nC_r: from Ch.6/M252, not studied in this course
- modeling using Recurrence relations

Modeling problems: use recurrences

1. Posed by Leonardo of Pisa: A pair of rabbits does not breed until it is 2 months old. At age 2 months, they begin producing a pair of offspring every month. Use recurrence to track the number R_{n} of pairs of rabbits after n months.

2. Tower of Hanoi: see http://www.mathsisfun. com/games/towerofhanoi .html

Must move a tapered stack of rings to a different pole, moving only one ring at a time, and never placing a larger ring over a smaller one. Use recurrence to track the minimum number M_{n} of moves in order to win game with n rings.

$1 \quad 1$
Let $M_{n}=$ minimum $\&$ of moves needed to win beginning s / n rings

$$
M_{1}=1 \quad \text { Recursive formala: } M_{n}=M_{n-1}+1+M_{n-1}=2 M_{n-1}+1
$$

Note, to complete game, need

3. Let b_{n} represent the number of bit strings (strings of 0 s and 1 s) of length n not containing consecutive 0 s. Write a recurrence for b_{n}.

$$
b_{n}=b_{n-2}+b_{n-1}
$$

When forming a valid bit string of length n

- take valid bit string of length $(n-1)$ and tack on a ' i ' at the rus.
- take a valid bit string on length $(n-2)$ and tack on ' 10 '.

4. Enumerating codewords: Say a valid codeword is a string from the alphabet" $0-9$ " containing an even number of 0 s . Let a_{n} represent the number of valid codewords of length n. Write a recurrence for a_{n}.

$$
\begin{aligned}
& a_{1}=9 \\
& a_{2}=82
\end{aligned}
$$

 a valid word of length $n-2$ and either

- tacking on OU
e tacking on any of 81 pairs of $11,12, \ldots, 19,21, \ldots, 29, \ldots, 91, \ldots 99$ suggests $\quad a_{n}=82 a_{n-2}$

2. Every valid $(n-1)$ length woe word/ can have a $1-9$ tacked outs it and every invalid ($n-1$) length code world can have a O tacked onto it.

$$
a_{n}=9 a_{n-1}+\left(10^{n-1}-a_{n \cdot 1}\right)
$$

