5. Catalan numbers: Let C_{n} denote the number of different ways to parenthesize the product of
 $(n+1)$ numbers, $x_{0} \cdot x_{1} \cdot x_{2} \cdots x_{n}$.
6. Let w_{n} represent the number of strings of length n over the alphabet "abode" with no adjacent e's.
Base cases: $w_{1}=5, \quad w_{2}=25-1=24, w_{3}=5^{3}-9=116$ Write a recursive formula noting:

- any valid length-($n-1$) word can be extended to produce a valid length $-n$ wood in ore of 4 ways - tack on a, b, c, d.
- any valid length-(n-2)word can be extended to produce a valid length - n word in ore of 4 ways - tack on ae, be, $c e, d e$

$$
w_{n}=4 w_{n-1}+4 w_{n-2}
$$

Since linear, homog., const. Coeff, can use process in 8.2 :

$$
w_{n}=r^{n} \quad\left(w_{n-1}=r^{n-1}, w_{n-2}=r^{n-2}\right)
$$

Insert

$$
\begin{aligned}
r^{n} & =4 r^{n-1}+4 r^{n-2} \quad \text { or } \quad r^{n-2}\left(r^{2}-4 r-4\right)=0 \\
r^{2}-4 r-4 & =0 \quad \text { hes roots } \\
r & =\frac{4}{2(1)} \pm \frac{1}{2(1)} \sqrt{16-4(-4)}=2 \pm 2 \sqrt{2}
\end{aligned}
$$

Now take a weighted sum

$$
w_{n}=\alpha_{1}(2+2 \sqrt{2})^{n}+\alpha_{2}(2-2 \sqrt{2})^{n}
$$

Now use

$$
\left\{\left\{\begin{array}{l}
5=w_{1}=\alpha_{1}(2+2 \sqrt{2})+\alpha_{2}(2-2 \sqrt{2}) \\
24=w_{2}=\alpha_{1}(2+2 \sqrt{2})^{2}+\alpha_{2}(2-2 \sqrt{2})^{2}
\end{array}\right.\right.
$$

2 eyas lead to findry α_{1}, α_{2}.

More recurrences

7. Ways to feed $\$ \mathrm{n}$ to a vending machine with $\$ 1$ coins, $\$ 1$ bills, $\$ 5$ bills
8. Ways to form ternary strings with no consecutive Os

- first, second, ..., th differences for a given sequence a_0, a_1, ... Find first and second ones for the Fibonacci sequence

For 7 , write f_{n} for the number of ways to feed machine $\$ n$

$$
\begin{aligned}
\text { Symbols: } C & =\$ 1 \text { coin, } 1=\$ 1 \text { bill, } 5=\$ 5 \text { bill } \\
\text { base: } f_{1} & =2 \\
f_{2} & =4 \\
f_{3} & =2^{3} \\
f_{4} & =2^{4} \\
f_{5} & =1+2^{5}
\end{aligned}
$$

Recursive formula:

$$
\begin{aligned}
& f_{n}=2 f_{n-1}+f_{n-5} \quad \text { linear, homo., const.coiff, deg } 5 \\
& r^{n}=2 r^{n-2}+r^{n-5} \quad \text { becomes } \quad \frac{r^{5}-2 r^{4}-1=0}{\text { hard to solve }}
\end{aligned}
$$

8. Valid strings have

- only $0,1,2$ as alphabet
- no consecutive O's.

Denote $\#$ of valid length $-n$ strings by w_{n}.
Note:

- Any length $-(n-1)$ valid string con be turned into a valid length - n string in 2 ways (ald 1, 2)
- Any length $-(n-2)$ valid string con be turned into a valid length - n string in 2 ways (add 10,20)
$\omega_{n}=2 \omega_{n-1}+2 \omega_{n-2}$

Tracer, homo., cast. coelf., degree 2.

