Datas NJ\M\ %W%Lm
))

Math 251, Fri 12-Nov-2021 -- Fri 12-Nov-2021
Discrete Mathematics
Fall 2021

Wk 11, Fr
Topic:: Divide-and-conquer algorithms
Read:: Rosen 8.3

Binary search is an example of divide-and-conquer algorithm
- At each stage, a comparison leads to "halving" the problem
- More specifically, if
n = size of the list (suppose it is even), and
f(n) = worst-case count of operations needed to find key in list of size n
then
f(n)

f(n/2) + 2

Speaking generally, if we continue to define

n = size of the problem/data, and

f(n) = count of operations needed to carry out algorithm on data of size n
i lgorithm has the property that
f(n) = a £f(n/b) + gln)
en our algorithm is classified as a divide-and-conquer algorithm.

The relation
f(n) = a £f(n/b) + g(n)
with a, b constants, is called a divide-and-conquer relation.

%\((‘\M\S SUAV()A
Cebd it e sebd Bt & sae o (ew)

O\U\I')j

T M

o{6) &by N

o5)
v ob\k.&.,,\ boe \,\L% \o
C}J""‘W&V\o \L k\« O\k% ~ \ 3

AADM C/ﬂ‘\\\hfrssy ')b Swe C(Sr = \I\D&(‘Y“\l%‘(e OQ \LM\)(\'& \
Kt ok & L tomgurigons

IY(V\\ - gz(w/z) - Z

C&,\“Qg S\\’bwge' SD\V:N?“ V& mCe 5 2 br?rpacbtg

\. \'L‘f\w, (/pst. O\u_[.l') \/‘6‘%00&. ‘ \Lﬂ\ lv)r(_((% {L (P()
7. '{w%&

clevt foe ORC oo

Ed S

Q(a} Q /Jo\l r C LWL hewe o DAC e z(w\ - ¢ >‘

PO Q)V\ Use featiom o Solve the weeromec

;(QOL\ = Q?\@L/k\ rC = Q’(T\ %W e ((1&/&;%\
o[t s re = TH™) o v (Ha)

) &[&Q(h"z/,g\ Jrq cocte 7o (B7) Fee vacre

\)

-\ -2 1
= O\hg(ko) + & c¢cda ¢+ - rac *AC + C

—

O
"
ﬂ\Q

NN wse LA
\. ‘\Siwc,&
=
7.
&\03"

Tomxw R O s b
Hﬁ:wwagm+&§~&ﬂ

_ . N
._G\XYK\‘_\—Q’,-TK—/\— - O\k((\((\)r

9

A'AN

n

_ 0\:&(\(\3 + Q,L\ x G +c:l koo +G\\4_,1>

L

A trwms i DXW"'*V;" %

_ \ C ¢
- &ki;m+&_\> o

S S N \DOM
O\L _ O\\OL\LV\

St (S

|

MATH 251 Notes Theorems from Rosen, 5th Ed., Section 8.3

Theorems from Rosen, 5th Ed., Section 8.3

Theorem 1: Suppose f is an increasing function which satisfies the recurrence relation

f(n) = af(n/b) +c,

whenever 7 is an integer divisible by (integer) b > 1. Supposea > 1 and ¢ > 0. Then

| o@ms®), ifa>1,
e { O(logn), ifa 1.

In addition, when n = b for integer k > 0, we have

c

flo) = (0 + 55) ome - .

Theorem 2 (Master Theorem): Let f be an increasing function that satisfies the recurrence

relation

f(n) = af(n/b) +cn’,

whenever n = b, where k is a positive integer, @ > 1, b is an integer greater than 1, and

¢ > 0,d > 0 are real numbers. Then
o(n%), ifa <17,

f(n)is X O(n'logn), ifa =1,
o(n'°&"), ifa > b

MATH 251 Notes Theorems from Rosen, 5th Ed., Section 8.3

LTl BT ew

1o & = B EYRY Y,
R N N AT A

—T&\@‘“\.}) 'h\‘l—%& e DAC« Mlrrences W —‘\'"f"/ e Moﬁ'\‘w Teartm so,.ag

Lbel s den 3 2 3¢t s T6) s B

J

2' a:%l %1‘3/ = \}’L, cl:‘ — 2 —_-%‘) go Q(P\\ IS B(“ \o}v\>)
\ lo 3
3 oast bel et del = g 72, s B pla) = O

MATH 251 Notes Divide and Conquer

Divide and Conquer

Suppose f(n) is the count of operations required, using a certain algorithm, to perform a task of
size n (n is a measure on the input to the algorithm). If f satisfies a recurrence relation of the form

f(n) = af(n/b) + g(n), ¢y
with a, b > 0, called a divide-and-conquer recurrence relation, then the algorithm is said to be a

divide-and-conquer algorithm.

Example 1:

1. Binary search. Take f(n) to be the number of comparisons required to find a search key
in an ordered list of length 1 using the binary search algorithm. (See Section 2.1). Then
f(n) = f(n/2) +2.

2. Fast integer multiplication. Let f(n) be the count of bit operations required to multiply
two (2n)-bit integers. Let a, b be two such integers with binary representations

a= (ay;_1...a2a100)2 and b= (byy—1...bab1bg)2,
and writea = Ag + 2"A1,a = By + 2"B;, so that each of Ay, A1, By, B1 are n-bit numbers;
note that
Ao = (ap—1...a2a100)2 and A1 = (Ap—1 ... An420n410n)2,
with similar relationships between the binary representions for By, B; and b. By writing
ab = (Ao +2"A1)(Bo+2"By) = 22"A1By + 2"(A¢By + A1Bo) + AgBy

(22" + 2" A 1By — 2"A1By + 2"(AoB1 + A1By) — 2" AoBy + (2" + 1)AoBy

(22" 4+ 2")A By 4 2"(Ay — Ag)(Bo — B1) + (2" + 1)AgBg
and interpreting multiplications like 25C as a sliding of bits k places to the left (rather than
actual multiplication), we see that the problem of multiplying two (2n)-bit integers 2 and

b has been replaced with three multiplications involving n-bit integers, along with several
slidings, subtractions and additions, the count of which is proportional to n. Thus,

f(2n) = 3f(n)+ Cn.

3. Consider the number of comparisons required to sort a list of items via the merge sort

7th ed.). This algorithm, for even n, divides the

algorithm described in Section 3.5 (Rosen,
list into two lists of size 1/2 and, once the two sub-lists are sorted, requires fewer than n
comparisons to merge the two sorted sub-lists into one complete (and sorted) list. Thus,
the number of comparisons used by the algorithm on a list of size # is less than M(n), a

function which satisfies the divide-and-conquer relation

M(n) = 2M(n/2) + n.

MATH 251 Notes Divide and Conquer

Some relevant details

Logarithms. Write r = log,x when b" = x. Said another way, log, x returns the number r for which
b" = x. Some properties that arise from this idea:

—_

. bl°%* = x, akin to saying the number of ounces in a 32-ounce jar is 32.

N

. log, (xy) = log, x + log, y, since

plosyxtlog,y — plogyx plogyy — yy

3. log,(x/y) = log, x — log,, y, demonstrated similarly.
4. log,(x") = rlog,, x, since
brloghx _ (blogbx)r -~

5. log, x = log, x/log, a, since

b(logux)(logba) _ (blogba>logax _ alogux —

Thus, (log, x)(log, a) is the exponent to which, when b is raised, yields x—i.e., it equals log, x.
6. For positive real numbers a4, b, and c,

\D (9
alogbc _ Clogba‘ \D’BLV\ RN XL

(e

This is true because

log, (c%) = (log,a) (log,c) = log,c,
by Property 5 above. This means that log,, c is the power to which you must raise a in order
to produce c'°8:7.

7. O(log, n) is independent of base b. That is, if a is any other base, and if | f(n)| < C|log,, 1| (the
meaning of O(log, 1)), then by Property 5 above,

C N
|f(n)] < Cllog,n| = wﬂoga’ﬂ = Cllog,n,

which shows f is O(log, 1) as well. Convention, then, is to write O(log 1) without reference

to a particular base b.

Question: For an integer n, how many stages of dividing into b parts, then subdividing those parts
into b parts, and so on, may be carried out before all constituent parts are of size 1?

Answer: We can develop some intuition by investigating the number of ways to divide an integer
by 2. The numbers 5,6,7, and 8 each require 3 stages. The numbers 9,10, 11,12,13, 14,15, and 16
require 4 stages. In general the integers 2~1 < 1 < 2¥ all require k = log, 2¢ = [log, 1] stages.

Speaking generally, if an integer n satisfies b1 < n < bF and, at each stage, is to be divided into b
parts, then it requires k = log, b* = [log, 1| stages.

MATH 251 Notes Divide and Conquer

Important theorems

When f satisfies the divide-and-conquer relation (1) and 7 has b* as a factor, we have

fn)

af(n/b) +g(n) = a(af(n/b’)+ g(n/b)) +g(n)
a> f(n/b*) + ag(n/b) + g(n)
@ f(n/b%) + a’g(n/b?) + ag(n/b) + g(n) =
k—1
= df(n/tk) + > alg(n/v).

j=0

In the special case where g(n) = ¢ (a constant), this becomes

k=1 a* f(n/bF) + ck, ifa=1,
_ K bk] —
o) = f) +e Bya { S Y

a—1 7

This gives rise to the following theorem.

)

f(n) = af(n/b) +c,

| oms?), ifa>1,
fln) is { O(logn), ifa=1.

In addition, when n = bF for integer k > 0, we have

c

flo) = (F0)+ 55) ome - <

Theorem 3: Suppose f is an increasing function which satisfies the recurrence relation

whenever 7 is an integer divisible by (integer) b > 1. Supposea > 1 and ¢ > 0. Then

Proof: Case: n = b (so k = log;, n).
If a = 1, then Equation (2) says

f(n) = f(1)+ck = f(1) +clog,n,

showing f is O(logn).

Now suppose a > 1. Equation (2) says

c(ak —1)

oy =)+ SO e ()) - e (-

c

)_

c

a—1"

MATH 251 Notes Divide and Conquer

General Case. When #n is not a power of b, there is an integer k > 0 such that
b < n < b1 We treat the case with a > 1 only. Because f is an increasing function,

f(n) < fO*YY = Cd* + G = (Cla)d* + Cy = (Cra)a®8" + Cy,
where C; = f(1) +¢/(a—1) and C; = —¢/(a — 1). Hence, the result holds. m]
The previous result is applicable to the binary search algorithm which, as we found, gives rise
to the recurrence relation f(n) = f(n/2) + 2. To draw conclusions about the divide-and-conquer

recurrence relations of fast integer multiplication and the merge sort, we need a more general

theorem.

Theorem 4 (Master Theorem): Let f be an increasing function that satisfies the recurrence
relation

f(n) = af(n/b) + cn,

whenever n = V¥, where k is a positive integer, 2 > 1, b is an integer greater than 1, and
¢ > 0,d > 0 are real numbers. Then

Oo(n?), ifa < b7,

f(n)is { O(n'logn), ifa =17,
o(n'°&%), ifa > b

Proof: Ifa = b¥ and n = b, then

f(n) = af(n/b)+cn’ = a {af(n/bz) +c (%)q +cn?

k—1 j k—1
= df1) +cnt (ba—d = (M) + en? Z 1
j=0 j=0

= f(n' +ckn® = f(1)n? + cn'log, n.

Now, assume k > 0 is such that b¥ < n < b**1. Because f is an increasing function, we

have
fn) < fE*Y = FOBEVE ek 4 1)pkHDA
= FOP W) + b (V)T + b (V)
< [f(1) + clan” + can® log, n.

7

MATH 251 Notes Divide and Conquer

Thus, in the casea = b?, we have the desired result, as the n? log n term above dominates
the n term. O

Examples:
1. Suppose T(n) = 3T(n/2) + n?.

By the Master Theorem, takinga = 3,b =2,c = 1and d = 2, we have T(n) is O(n?), since
3 <22
2. Suppose f(n) =3T(n/3) + n/2.

By the Master Theorem, takinga = 3,b =3,c =1/2andd = 1, we have T(n) is O(nlogn),
since 3 = 31.

3. Suppose f(n) =4T(n/2) + n/2.
By the Master Theorem, takinga = 4,b = 2,c = 1/2and d = 1, we have T(n) is O(n?1°8:2),
since 4 > 21.

