Math 251, Fri 12-Nov-2021 -- Fri 12-Nov-2021
Discrete Mathematics
Fall 2021

Friday, November 12th 2021

Wk 11, Fr
Topic:: Divide-and-conquer algorithms
Read: : Rosen 8.3

Binary search is an example of divide-and-conquer algorithm

- At each stage, a comparison leads to "halving" the problem
- More specifically, if
$\mathrm{n}=$ size of the list (suppose it is even), and
$f(n)=$ worst-case count of operations needed to find key in list of size n then
$f(n)=f(n / 2)+2$

Speaking generally, if we continue to define $\mathrm{n}=$ size of the problem/data, and
$f(n)=$ count of operations needed to carry out algorithm on data of size n and if our algorithm has the property that $f(n)=a f(n / b)+g(n)$
then our algorithm is classified as a divide-and-conquer algorithm.

The relation
$f(n)=a f(n / b)+g(n)$
with a, b constants, is called a divide-and-conquer relation.

Binary search

- Start with a sorted list of size a (even)

- looking for a key k

Compare k with $a\left(\frac{n}{2}-1\right)$
Another comparison to see if a half-list is of length 1
At cost of 2 comparisons

$$
f(n)=f(n / 2)+2
$$

Ch. 8 focus: Solving recurremes. 2 app roaches

1. Iinewe, const.coct., homog., $k^{\text {th }}$ dare (8.2 A)
2. iterative approach
relevant for DAC recurrences

Ex. Suppose

$$
f(n)=a f(n / b)+c \quad(\text { we hare a DAC recurrmace, } f(a)=c) \text {. }
$$

and $n=b^{k}$. Use iteration to solve the recurrume:

$$
\begin{aligned}
f\left(b^{k}\right) & =a f\left(b^{k} / b\right)+c=a f\left(b^{k-1}\right)+c \quad(1 \text { function }) \\
& =a\left[a f\left(b^{k-1} / b\right)+c\right]+c=a^{2} f\left(b^{k-2}\right)+a c+c\left({ }^{2 n-1} \text { iturtion }\right) \\
& =a^{2}\left[a f\left(b^{k-2} / b\right)+c\right]+a c+c=a^{3} f\left(b^{k-3}\right)+a^{2} c+a c+c \\
& =\cdots \\
& =a^{k} f\left(b^{0}\right)+a^{k-1} c+a^{k-2} c+\cdots+a^{2} c+a c+c
\end{aligned}
$$

$$
\begin{aligned}
& =a^{k} f(1)+\underbrace{c(\underbrace{1+a+a^{2}+\cdots+a^{k-1}})}_{\text {terms in geometric seq. }} \\
& =a^{k} f(1)+c \frac{a^{k}-1}{a-1}=a^{k} f(1)+\frac{c a^{k}}{a-1}-\frac{c}{a-1} \\
& =a^{k}\left(f(1)+\frac{c}{a-1}\right)-\frac{c}{a-1}
\end{aligned}
$$

Now use ? things

1. Assumed $n=b^{k}$ which means $k=\log _{b} n$

$$
\Rightarrow a^{k}=a^{\log _{6} n}
$$

2.

$$
a^{\log _{b} n}=n^{\log _{b} a} . \quad(\text { Surprising? })
$$

Together with what come before

$$
f(n)=n^{\log _{6} a}\left(f(1)+\frac{c}{a-1}\right)-\frac{c}{a-1}
$$

Theorems from Rosen, 5th Ed., Section 8.3

Theorem 1: Suppose f is an increasing function which satisfies the recurrence relation

$$
f(n)=a f(n / b)+c,
$$

whenever n is an integer divisible by (integer) $b>1$. Suppose $a \geqslant 1$ and $c>0$. Then

$$
f(n) \text { is } \begin{cases}O\left(n^{\log _{b} a}\right), & \text { if } a>1 \\ O(\log n), & \text { if } a=1\end{cases}
$$

In addition, when $n=b^{k}$ for integer $k>0$, we have

$$
f(n)=\left(f(1)+\frac{c}{a-1}\right) n^{\log _{b} a}-\frac{c}{a-1} .
$$

Theorem 2 (Master Theorem): Let f be an increasing function that satisfies the recurrence relation

$$
f(n)=a f(n / b)+c n^{d}
$$

whenever $n=b^{k}$, where k is a positive integer, $a \geqslant 1, b$ is an integer greater than 1 , and $c>0, d \geqslant 0$ are real numbers. Then

$$
f(n) \text { is } \begin{cases}O\left(n^{d}\right), & \text { if } a<b^{d} \\ O\left(n^{d} \log n\right), & \text { if } a=b^{d} \\ O\left(n^{\log _{b} a}\right), & \text { if } a>b^{d} .\end{cases}
$$

$$
\begin{array}{ll}
\text { 1. } & T(n)=3 T(n / 2)+n^{2} \\
\text { 2. } & f(n)=3 f(n / 3)+n / 2 \\
\text { 3. } & f(n)=4 f(n / 2)+n / 2
\end{array}
$$

Taking these three DAC recurrences in turn, the Master Theorem says

1. $b=2, c=1, d=2, a=3 \rightarrow 3<2^{2}$, so $T(a)$ is $O\left(n^{2}\right)$.
2. $a=3, b=3, c=1 / 2, d=1 \rightarrow 3=3^{\prime}$, so $f(n)$ is $O(n \log n)$.
3. $a=4, b=2, c=1 / 2, d=1 \rightarrow 4>2^{\prime}$, so $f(n)$ is $O\left(n^{\log _{2} 4}\right)=0\left(n^{2}\right)$.

Divide and Conquer

Suppose $f(n)$ is the count of operations required, using a certain algorithm, to perform a task of size n (n is a measure on the input to the algorithm). If f satisfies a recurrence relation of the form

$$
\begin{equation*}
f(n)=a f(n / b)+g(n), \tag{1}
\end{equation*}
$$

with $a, b>0$, called a divide-and-conquer recurrence relation, then the algorithm is said to be a divide-and-conquer algorithm.

Example 1:

1. Binary search. Take $f(n)$ to be the number of comparisons required to find a search key in an ordered list of length n using the binary search algorithm. (See Section 2.1). Then $f(n)=f(n / 2)+2$.
2. Fast integer multiplication. Let $f(n)$ be the count of bit operations required to multiply two (2n)-bit integers. Let a, b be two such integers with binary representations

$$
a=\left(a_{2 n-1} \ldots a_{2} a_{1} a_{0}\right)_{2} \quad \text { and } \quad b=\left(b_{2 n-1} \ldots b_{2} b_{1} b_{0}\right)_{2}
$$

and write $a=A_{0}+2^{n} A_{1}, a=B_{0}+2^{n} B_{1}$, so that each of $A_{0}, A_{1}, B_{0}, B_{1}$ are n-bit numbers; note that

$$
A_{0}=\left(a_{n-1} \ldots a_{2} a_{1} a_{0}\right)_{2} \quad \text { and } \quad A_{1}=\left(a_{2 n-1} \ldots a_{n+2} a_{n+1} a_{n}\right)_{2}
$$

with similar relationships between the binary representions for B_{0}, B_{1} and b. By writing

$$
\begin{aligned}
a b & =\left(A_{0}+2^{n} A_{1}\right)\left(B_{0}+2^{n} B_{1}\right)=2^{2 n} A_{1} B_{1}+2^{n}\left(A_{0} B_{1}+A_{1} B_{0}\right)+A_{0} B_{0} \\
& =\left(2^{2 n}+2^{n}\right) A_{1} B_{1}-2^{n} A_{1} B_{1}+2^{n}\left(A_{0} B_{1}+A_{1} B_{0}\right)-2^{n} A_{0} B_{0}+\left(2^{n}+1\right) A_{0} B_{0} \\
& =\left(2^{2 n}+2^{n}\right) A_{1} B_{1}+2^{n}\left(A_{1}-A_{0}\right)\left(B_{0}-B_{1}\right)+\left(2^{n}+1\right) A_{0} B_{0}
\end{aligned}
$$

and interpreting multiplications like $2^{k} \mathrm{C}$ as a sliding of bits k places to the left (rather than actual multiplication), we see that the problem of multiplying two (2n)-bit integers a and b has been replaced with three multiplications involving n-bit integers, along with several slidings, subtractions and additions, the count of which is proportional to n. Thus,

$$
f(2 n)=3 f(n)+C n .
$$

3. Consider the number of comparisons required to sort a list of n items via the merge sort algorithm described in Section 3.5 (Rosen, $7^{\text {th }}$ ed.). This algorithm, for even n, divides the list into two lists of size $n / 2$ and, once the two sub-lists are sorted, requires fewer than n comparisons to merge the two sorted sub-lists into one complete (and sorted) list. Thus, the number of comparisons used by the algorithm on a list of size n is less than $M(n)$, a function which satisfies the divide-and-conquer relation

$$
M(n)=2 M(n / 2)+n
$$

Some relevant details

Logarithms. Write $r=\log _{b} x$ when $b^{r}=x$. Said another way, $\log _{b} x$ returns the number r for which $b^{r}=x$. Some properties that arise from this idea:

1. $b^{\log _{b} x}=x$, akin to saying the number of ounces in a 32 -ounce jar is 32 .
2. $\log _{b}(x y)=\log _{b} x+\log _{b} y$, since

$$
b^{\log _{b} x+\log _{b} y}=b^{\log _{b} x} \cdot b^{\log _{b} y}=x y .
$$

3. $\log _{b}(x / y)=\log _{b} x-\log _{b} y$, demonstrated similarly.
4. $\log _{b}\left(x^{r}\right)=r \log _{b} x$, since

$$
b^{r \log _{b} x}=\left(b^{\log _{b} x}\right)^{r}=x^{r} .
$$

5. $\log _{a} x=\log _{b} x / \log _{b} a$, since

$$
b^{\left(\log _{a} x\right)\left(\log _{b} a\right)}=\left(b^{\log _{b} a}\right)^{\log _{a} x}=a^{\log _{a} x}=x .
$$

Thus, $\left(\log _{a} x\right)\left(\log _{b} a\right)$ is the exponent to which, when b is raised, yields x-i.e., it equals $\log _{b} x$.
6. For positive real numbers a, b, and c,

$$
a^{\log _{b} c}=c^{\log _{b} a} . \quad a^{\log _{b} n}=n^{\log _{b} a}
$$

This is true because

$$
\log _{a}\left(c^{\log _{b} a}\right)=\left(\log _{b} a\right)\left(\log _{a} c\right)=\log _{b} c,
$$

by Property 5 above. This means that $\log _{b} c$ is the power to which you must raise a in order to produce $c^{\log _{b} a}$.
7. $O\left(\log _{b} n\right)$ is independent of base b. That is, if a is any other base, and if $|f(n)| \leqslant C\left|\log _{b} n\right|$ (the meaning of $O\left(\log _{b} n\right)$), then by Property 5 above,

$$
|f(n)| \leqslant C\left|\log _{b} n\right|=\frac{C}{\left|\log _{a} b\right|}\left|\log _{a} n\right|=\tilde{C}\left|\log _{a} n\right|,
$$

which shows f is $O\left(\log _{a} n\right)$ as well. Convention, then, is to write $O(\log n)$ without reference to a particular base b.

Question: For an integer n, how many stages of dividing into b parts, then subdividing those parts into b parts, and so on, may be carried out before all constituent parts are of size 1?

Answer: We can develop some intuition by investigating the number of ways to divide an integer by 2 . The numbers $5,6,7$, and 8 each require 3 stages. The numbers $9,10,11,12,13,14,15$, and 16 require 4 stages. In general the integers $2^{k-1}<n \leqslant 2^{k}$ all require $k=\log _{2} 2^{k}=\left\lceil\log _{2} n\right\rceil$ stages.

Speaking generally, if an integer n satisfies $b^{k-1}<n \leqslant b^{k}$ and, at each stage, is to be divided into b parts, then it requires $k=\log _{b} b^{k}=\left\lceil\log _{b} n\right\rceil$ stages.

Important theorems

When f satisfies the divide-and-conquer relation (1) and n has b^{k} as a factor, we have

$$
\begin{aligned}
f(n) & =a f(n / b)+g(n)=a\left(a f\left(n / b^{2}\right)+g(n / b)\right)+g(n) \\
& =a^{2} f\left(n / b^{2}\right)+a g(n / b)+g(n) \\
& =a^{3} f\left(n / b^{3}\right)+a^{2} g\left(n / b^{2}\right)+a g(n / b)+g(n)=\cdots \\
& =a^{k} f\left(n / b^{k}\right)+\sum_{j=0}^{k-1} a^{j} g\left(n / b^{j}\right) .
\end{aligned}
$$

In the special case where $g(n)=c$ (a constant), this becomes

$$
f(n)=a^{k} f\left(n / b^{k}\right)+c \sum_{j=0}^{k-1} a^{j}= \begin{cases}a^{k} f\left(n / b^{k}\right)+c k, & \text { if } a=1, \tag{2}\\ a^{k} f\left(n / b^{k}\right)+\frac{c\left(a^{k}-1\right)}{a-1}, & \text { if } a>1 .\end{cases}
$$

This gives rise to the following theorem.

Theorem 3: Suppose f is an increasing function which satisfies the recurrence relation

$$
f(n)=a f(n / b)+c,
$$

whenever n is an integer divisible by (integer) $b>1$. Suppose $a \geqslant 1$ and $c>0$. Then

$$
f(n) \text { is } \begin{cases}O\left(n^{\log _{b} a}\right), & \text { if } a>1, \\ O(\log n), & \text { if } a=1 .\end{cases}
$$

In addition, when $n=b^{k}$ for integer $k>0$, we have

$$
f(n)=\left(f(1)+\frac{c}{a-1}\right) n^{\log _{b} a}-\frac{c}{a-1} .
$$

Proof: Case: $n=b^{k}$ (so $k=\log _{b} n$).
If $a=1$, then Equation (2) says

$$
f(n)=f(1)+c k=f(1)+c \log _{b} n,
$$

showing f is $O(\log n)$.
Now suppose $a>1$. Equation (2) says
$f(n)=a^{k} f(1)+\frac{c\left(a^{k}-1\right)}{a-1}=a^{\log _{b} n}\left(f(1)+\frac{c}{a-1}\right)-\frac{c}{a-1}=n^{\log _{b} a}\left(f(1)+\frac{c}{a-1}\right)-\frac{c}{a-1}$.

General Case. When n is not a power of b, there is an integer $k \geqslant 0$ such that $b^{k}<n<b^{k+1}$. We treat the case with $a>1$ only. Because f is an increasing function,

$$
f(n) \leqslant f\left(b^{k+1}\right)=C_{1} a^{k+1}+C_{2}=\left(C_{1} a\right) a^{k}+C_{2}=\left(C_{1} a\right) a^{\log _{b} n}+C_{2}
$$

where $C_{1}=f(1)+c /(a-1)$ and $C_{2}=-c /(a-1)$. Hence, the result holds.

The previous result is applicable to the binary search algorithm which, as we found, gives rise to the recurrence relation $f(n)=f(n / 2)+2$. To draw conclusions about the divide-and-conquer recurrence relations of fast integer multiplication and the merge sort, we need a more general theorem.

Theorem 4 (Master Theorem): Let f be an increasing function that satisfies the recurrence relation

$$
f(n)=a f(n / b)+c n^{d},
$$

whenever $n=b^{k}$, where k is a positive integer, $a \geqslant 1, b$ is an integer greater than 1 , and $c>0, d \geqslant 0$ are real numbers. Then

$$
f(n) \text { is } \begin{cases}O\left(n^{d}\right), & \text { if } a<b^{d} \\ O\left(n^{d} \log n\right), & \text { if } a=b^{d} \\ O\left(n^{\log _{b} a}\right), & \text { if } a>b^{d}\end{cases}
$$

Proof: If $a=b^{d}$ and $n=b^{k}$, then

$$
\begin{aligned}
f(n) & =a f(n / b)+c n^{d}=a\left[a f\left(n / b^{2}\right)+c\left(\frac{n}{b}\right)^{d}\right]+c n^{d} \\
& =a^{2} f\left(n / b^{2}\right)+a c\left(\frac{n}{b}\right)^{d}+c n^{d} \\
& =a^{3} f\left(n / b^{3}\right)+a^{2} c\left(\frac{n}{b^{2}}\right)^{d}+a c\left(\frac{n}{b}\right)^{d}+c n^{d}=\cdots \\
& =a^{k} f(1)+c n^{d} \sum_{j=0}^{k-1}\left(\frac{a}{b^{d}}\right)^{j}=\left(b^{d}\right)^{k} f(1)+c n^{d} \sum_{j=0}^{k-1} 1 \\
& =f(1) n^{d}+c k n^{d}=f(1) n^{d}+c n^{d} \log _{b} n .
\end{aligned}
$$

Now, assume $k \geqslant 0$ is such that $b^{k}<n \leqslant b^{k+1}$. Because f is an increasing function, we have

$$
\begin{aligned}
f(n) & \leqslant f\left(b^{k+1}\right)=f(1) b^{(k+1) d}+c(k+1) b^{(k+1) d} \\
& =f(1) b^{d} \cdot\left(b^{k}\right)^{d}+c b^{d} \cdot\left(b^{k}\right)^{d}+c b^{d} \cdot\left(b^{k}\right)^{d} k \\
& \leqslant[f(1)+c] a n^{d}+c a n^{d} \log _{b} n .
\end{aligned}
$$

Thus, in the case $a=b^{d}$, we have the desired result, as the $n^{d} \log n$ term above dominates the n^{d} term.

Examples:

1. Suppose $T(n)=3 T(n / 2)+n^{2}$.

By the Master Theorem, taking $a=3, b=2, c=1$ and $d=2$, we have $T(n)$ is $O\left(n^{2}\right)$, since $3<2^{2}$.
2. Suppose $f(n)=3 T(n / 3)+n / 2$.

By the Master Theorem, taking $a=3, b=3, c=1 / 2$ and $d=1$, we have $T(n)$ is $O(n \log n)$, since $3=3^{1}$.
3. Suppose $f(n)=4 T(n / 2)+n / 2$.

By the Master Theorem, taking $a=4, b=2, c=1 / 2$ and $d=1$, we have $T(n)$ is $O\left(n^{2 \log _{2} 2}\right)$, since $4>2^{1}$.

