
Math 251, Fri 12-Nov-2021 -- Fri 12-Nov-2021

Discrete Mathematics

Fall 2021

Friday, November 12th 2021

Wk 11, Fr

Topic:: Divide-and-conquer algorithms

Read:: Rosen 8.3

Binary search is an example of divide-and-conquer algorithm

- At each stage, a comparison leads to "halving" the problem

- More specifically, if

n = size of the list (suppose it is even), and

f(n) = worst-case count of operations needed to find key in list of size n

then

f(n) = f(n/2) + 2

Speaking generally, if we continue to define

n = size of the problem/data, and

f(n) = count of operations needed to carry out algorithm on data of size n

and if our algorithm has the property that

f(n) = a f(n/b) + g(n)

then our algorithm is classified as a divide-and-conquer algorithm.

The relation

f(n) = a f(n/b) + g(n)

with a, b constants, is called a divide-and-conquer relation.

Oscar Nathan Brayden

Binary search
startwith a sorted list of size or even

alum

I 1 I 1 IF I
9do all qq.ly alni

lookingfor a key k
Compare k with a Z 1
Another comparison to see if a half list is of length 1

At costof 2 comparisons

f n ff t 2

Ch8 focus solving recurrences 2 approaches

1 linear constcould homog kth degree 8.2A
2 it act

relevantforDAC recurrences

Exj suppose
f n affYb t C wehave a DACrecurrence glut c

and n b Useiteration to solve the recurrence

f ble af t C a flb C citation

a a ffb c c offlb 21 tact c 17ham
as

a a f Wb c tact c a'fff al tact e

abf fo t a e tak E t a tac t e

akfci t c I ta ta t a

raff
termsin geometricseq

a'fait c MI a'fast caa l

ah fa t

Now use 2 things
1 Assumed n bk which means k log a

ah a
logon

2
alog

n n Sba surprising

Together withwhat camebefore

ffnt nlogc.ae fcntac

MATH 251 Notes Theorems from Rosen, 5th Ed., Section 8.3

Theorems from Rosen, 5th Ed., Section 8.3

Theorem 1: Suppose f is an increasing function which satisfies the recurrence relation

f pnq “ a f pn{bq ` c,

whenever n is an integer divisible by (integer) b ° 1. Suppose a • 1 and c ° 0. Then

f pnq is

#
Opn

log
b

aq, if a ° 1,

Oplog nq, if a “ 1.

In addition, when n “ b
k

for integer k ° 0, we have

f pnq “
ˆ

f p1q ` c

a ´ 1

˙
n

log
b

a ´ c

a ´ 1
.

Theorem 2 (Master Theorem): Let f be an increasing function that satisfies the recurrence

relation

f pnq “ a f pn{bq ` cn
d,

whenever n “ b
k, where k is a positive integer, a • 1, b is an integer greater than 1, and

c ° 0, d • 0 are real numbers. Then

f pnq is

$
’&

’%

Opn
dq, if a † b

d,

Opn
d

log nq, if a “ b
d,

Opn
log

b
aq, if a ° b

d.

2

MATH 251 Notes Theorems from Rosen, 5th Ed., Section 8.3

3

1 Tcn 3T 12 u2

2 flat 3 f Vz t Iz
3 flu 4 f Yz t 12

TakingthesethreeDACrecurrences in turn theMasterTheoremsays

I b 2 c l d 2 a 3 3h22 so Tca is n

2 a 3 8 3 e h d I 3 3 so flat is Ofnlogin
3 a 4 6 2 c k d I 4 2 so flat is 0410924 044

MATH 251 Notes Divide and Conquer

Divide and Conquer

Suppose f pnq is the count of operations required, using a certain algorithm, to perform a task of

size n (n is a measure on the input to the algorithm). If f satisfies a recurrence relation of the form

f pnq “ a f pn{bq ` gpnq, (1)

with a, b ° 0, called a divide-and-conquer recurrence relation, then the algorithm is said to be a

divide-and-conquer algorithm.

Example 1:

1. Binary search. Take f pnq to be the number of comparisons required to find a search key

in an ordered list of length n using the binary search algorithm. (See Section 2.1). Then

f pnq “ f pn{2q ` 2.

2. Fast integer multiplication. Let f pnq be the count of bit operations required to multiply

two p2nq-bit integers. Let a, b be two such integers with binary representations

a “ pa2n´1 . . . a2a1a0q2 and b “ pb2n´1 . . . b2b1b0q2,

and write a “ A0 ` 2
n
A1, a “ B0 ` 2

n
B1, so that each of A0, A1, B0, B1 are n-bit numbers;

note that

A0 “ pan´1 . . . a2a1a0q2 and A1 “ pa2n´1 . . . an`2an`1anq2,

with similar relationships between the binary representions for B0, B1 and b. By writing

ab “ pA0 ` 2
n
A1qpB0 ` 2

n
B1q “ 2

2n
A1B1 ` 2

npA0B1 ` A1B0q ` A0B0

“ p2
2n ` 2

nqA1B1 ´ 2
n
A1B1 ` 2

npA0B1 ` A1B0q ´ 2
n
A0B0 ` p2

n ` 1qA0B0

“ p2
2n ` 2

nqA1B1 ` 2
npA1 ´ A0qpB0 ´ B1q ` p2

n ` 1qA0B0

and interpreting multiplications like 2
k
C as a sliding of bits k places to the left (rather than

actual multiplication), we see that the problem of multiplying two p2nq-bit integers a and

b has been replaced with three multiplications involving n-bit integers, along with several

slidings, subtractions and additions, the count of which is proportional to n. Thus,

f p2nq “ 3 f pnq ` Cn.

3. Consider the number of comparisons required to sort a list of n items via the merge sort

algorithm described in Section 3.5 (Rosen, 7
th

ed.). This algorithm, for even n, divides the

list into two lists of size n{2 and, once the two sub-lists are sorted, requires fewer than n

comparisons to merge the two sorted sub-lists into one complete (and sorted) list. Thus,

the number of comparisons used by the algorithm on a list of size n is less than Mpnq, a

function which satisfies the divide-and-conquer relation

Mpnq “ 2Mpn{2q ` n.

4

MATH 251 Notes Divide and Conquer

Some relevant details

Logarithms. Write r “ logbx when b
r “ x. Said another way, log

b
x returns the number r for which

b
r “ x. Some properties that arise from this idea:

1. b
log

b
x “ x, akin to saying the number of ounces in a 32-ounce jar is 32.

2. log
b
pxyq “ log

b
x ` log

b
y, since

b
log

b
x`log

b
y “ b

log
b

x ¨ b
log

b
y “ xy.

3. log
b
px{yq “ log

b
x ´ log

b
y, demonstrated similarly.

4. log
b
px

rq “ r log
b

x, since

b
r log

b
x “ pb

log
b

xqr “ x
r.

5. log
a

x “ log
b

x{ log
b

a, since

b
plog

a
xqplog

b
aq “ pb

log
b

aqlog
a

x “ a
log

a
x “ x.

Thus, plog
a

xqplog
b

aq is the exponent to which, when b is raised, yields x—i.e., it equals log
b

x.

6. For positive real numbers a, b, and c,

a
log

b
c “ c

log
b

a.

This is true because

log
a

´
c

log
b

a

¯
“

`
log

b
a
˘ `

log
a

c
˘

“ log
b

c,

by Property 5 above. This means that log
b

c is the power to which you must raise a in order

to produce c
log

b
a
.

7. Oplog
b

nq is independent of base b. That is, if a is any other base, and if | f pnq| § C| log
b

n| (the

meaning of Oplog
b

nq), then by Property 5 above,

| f pnq| § C| log
b

n| “ C

| log
a

b| | log
a

n| “ C̃| log
a

n|,

which shows f is Oplog
a

nq as well. Convention, then, is to write Oplog nq without reference

to a particular base b.

Question: For an integer n, how many stages of dividing into b parts, then subdividing those parts

into b parts, and so on, may be carried out before all constituent parts are of size 1?

Answer: We can develop some intuition by investigating the number of ways to divide an integer

by 2. The numbers 5, 6, 7, and 8 each require 3 stages. The numbers 9, 10, 11, 12, 13, 14, 15, and 16

require 4 stages. In general the integers 2
k´1 † n § 2

k
all require k “ log

2
2

k “
P
log

2
n

T
stages.

Speaking generally, if an integer n satisfies b
k´1 † n § b

k
and, at each stage, is to be divided into b

parts, then it requires k “ log
b

b
k “

P
log

b
n

T
stages.

5

celadon n096
a

MATH 251 Notes Divide and Conquer

Important theorems

When f satisfies the divide-and-conquer relation (1) and n has b
k

as a factor, we have

f pnq “ a f pn{bq ` gpnq “ a
`
a f pn{b

2q ` gpn{bq
˘

` gpnq
“ a

2
f pn{b

2q ` agpn{bq ` gpnq
“ a

3
f pn{b

3q ` a
2
gpn{b

2q ` agpn{bq ` gpnq “ ¨ ¨ ¨

“ a
k

f pn{b
kq `

k´1ÿ

j“0

a
j
gpn{b

jq.

In the special case where gpnq “ c (a constant), this becomes

f pnq “ a
k

f pn{b
kq ` c

k´1ÿ

j“0

a
j “

$
&

%
a

k
f pn{b

kq ` ck, if a “ 1,

a
k

f pn{b
kq ` cpa

k´1q
a´1
, if a ° 1.

(2)

This gives rise to the following theorem.

Theorem 3: Suppose f is an increasing function which satisfies the recurrence relation

f pnq “ a f pn{bq ` c,

whenever n is an integer divisible by (integer) b ° 1. Suppose a • 1 and c ° 0. Then

f pnq is

#
Opn

log
b

aq, if a ° 1,

Oplog nq, if a “ 1.

In addition, when n “ b
k

for integer k ° 0, we have

f pnq “
ˆ

f p1q ` c

a ´ 1

˙
n

log
b

a ´ c

a ´ 1
.

Proof: Case: n “ b
k

(so k “ log
b

n).

If a “ 1, then Equation (2) says

f pnq “ f p1q ` ck “ f p1q ` c log
b

n,

showing f is Oplog nq.

Now suppose a ° 1. Equation (2) says

f pnq “ a
k

f p1q ` cpa
k ´ 1q

a ´ 1
“ a

log
b

n

ˆ
f p1q ` c

a ´ 1

˙
´ c

a ´ 1
“ n

log
b

a

ˆ
f p1q ` c

a ´ 1

˙
´ c

a ´ 1
.

6

MATH 251 Notes Divide and Conquer

General Case. When n is not a power of b, there is an integer k • 0 such that

b
k † n † b

k`1
. We treat the case with a ° 1 only. Because f is an increasing function,

f pnq § f pb
k`1q “ C1a

k`1 ` C2 “ pC1aqa
k ` C2 “ pC1aqa

log
b

n ` C2,

where C1 “ f p1q ` c{pa ´ 1q and C2 “ ´c{pa ´ 1q. Hence, the result holds. ⇤

The previous result is applicable to the binary search algorithm which, as we found, gives rise

to the recurrence relation f pnq “ f pn{2q ` 2. To draw conclusions about the divide-and-conquer

recurrence relations of fast integer multiplication and the merge sort, we need a more general

theorem.

Theorem 4 (Master Theorem): Let f be an increasing function that satisfies the recurrence

relation

f pnq “ a f pn{bq ` cn
d,

whenever n “ b
k, where k is a positive integer, a • 1, b is an integer greater than 1, and

c ° 0, d • 0 are real numbers. Then

f pnq is

$
’&

’%

Opn
dq, if a † b

d,

Opn
d

log nq, if a “ b
d,

Opn
log

b
aq, if a ° b

d.

Proof: If a “ b
d

and n “ b
k
, then

f pnq “ a f pn{bq ` cn
d “ a

„
a f pn{b

2q ` c

´
n

b

¯d
⇢

` cn
d

“ a
2

f pn{b
2q ` ac

´
n

b

¯d

` cn
d

“ a
3

f pn{b
3q ` a

2
c

ˆ
n

b2

˙d

` ac

´
n

b

¯d

` cn
d “ ¨ ¨ ¨

“ a
k

f p1q ` cn
d

k´1ÿ

j“0

ˆ
a

bd

˙ j

“ pb
dqk

f p1q ` cn
d

k´1ÿ

j“0

1

“ f p1qn
d ` ckn

d “ f p1qn
d ` cn

d
log

b
n.

Now, assume k • 0 is such that b
k † n § b

k`1
. Because f is an increasing function, we

have

f pnq § f pb
k`1q “ f p1qb

pk`1qd ` cpk ` 1qb
pk`1qd

“ f p1qb
d ¨ pb

kqd ` cb
d ¨ pb

kqd ` cb
d ¨ pb

kqd
k

§ r f p1q ` csan
d ` can

d
log

b
n.

7

MATH 251 Notes Divide and Conquer

Thus, in the case a “ b
d
, we have the desired result, as the n

d
log n term above dominates

the n
d

term. ⇤

Examples:

1. Suppose Tpnq “ 3Tpn{2q ` n
2
.

By the Master Theorem, taking a “ 3, b “ 2, c “ 1 and d “ 2, we have Tpnq is Opn
2q, since

3 † 2
2
.

2. Suppose f pnq “ 3Tpn{3q ` n{2.

By the Master Theorem, taking a “ 3, b “ 3, c “ 1{2 and d “ 1, we have Tpnq is Opn log nq,
since 3 “ 3

1
.

3. Suppose f pnq “ 4Tpn{2q ` n{2.

By the Master Theorem, taking a “ 4, b “ 2, c “ 1{2 and d “ 1, we have Tpnq is Opn
2 log

2
2q,

since 4 ° 2
1
.

8

