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Math 251, Mon 15-Nov-2021 -- Mon 15-Nov-2021
Discrete Mathematics
Fall 2021

Wk 12, Mo
Topic:: Modular arithmetic
Read:: Rosen 4.1

This chapter: investigate number theory---integers, primes, congruences, etc.
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MATH 251 Notes

Divisors and multiples

Definition 1: Leta, bbe integers. We say a divides b, or a | b, precisely when there exists an
integer ¢ so that ac = b. When the negation of a | b holds—that is, when no integer ¢ exists
so that ac = b—we write a £ b.
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e Whena | b, integers, we say a is a divisor of b. g[

e The set of divisors of b lie between (—b) and b.

e The set of common divisors to integers b and c looks like D = {a € Z : (a | b) A (a | ¢)}.
Among the c;)mmon divisors, D has a largest element, called the greatest common divisor,
or ged(b,c).

e The set of common multiples of integers b and c looks like M = {me Z : (b |m) A (c | m)}.
Among the common multiples, M has a smallest positive element, called the least common
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multiple, or lem(b, c).
Example 1:

Find the gcd and lem of 21560 and 8190.
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MATH 251 Notes

Theorem 1 (Fundamental Theorem of Arithmetic): Every positive integer a > 2 is either
prime or the product of primes:
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If a, b are positive integers with prime factorizations
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(where, as needed, some «;, f; may be zero), then among all common divisors d of 2 and b (i.e,
numbers which satisfy (d | a) A (d | b)), the greatest common divisor is

ng(ﬂ, b) _ p;nin(al,ﬁl)prznin(az,ﬁz) o plr(nin(ak,ﬁk)-

Likewise, among all common multiples m of a and b (i.e., numbers which satisfy a | m and b | m),
the least common multiple is

lem(a, b) = prX(Apnax@abo)  pmax(anfo),

Note: ged(a,b) - lem(a, b) = ab.
Which among the following appear to be true claims?
e ® LetndeZ",and A={aeZ": (a<n) A (d|a)}. Then |A]= [n/d]. Cou-n‘('rxoé«—m_rl,, g nfgﬂ) d=n
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Tewe © (a|b) —al (be).

Tewe © (a|b)n(a|c)—>VmneZ, a| (mb+ nc).




MATH 251 Notes

Theorem 2 (Division Algorithm): Let 2 be an integer and d a positive integer. There exist
unique integers g, with 0 < r < d such that

a=dq+r.
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e The remainder r is the output of the mod function: r =/amodd. S o~ P

e If, at the end of a calculation, you intend to perform the mod function, it can be inserted at
various additive/multiplicative points along the way:

(37)(63) = 58*mod 11 = (37mod 11)(63mod 11) — (58 mod 11)* mod 11
— (4)(8)mod 11 — (3)*mod 11
= 32mod11 — 81 mod11
= 10-4 = 6.

It doesn’t work reliably in exponents, however:

6"mod13 = 6-(6°mod13)®mod13 = 6-108mod13
6 - (10000mod 13)>mod 13 = 6-3°mod13 = 2,

but
617m0d 13 0413 — 64 mod 13 = 9.




_rrwb / FEAS(_
I
Modular congruence 2 3 ZTS (Moi L[S T

—

MATH 251 Notes

Definition 2: Let a,b € Z and m > 2 be an integer. We say that a and b are congruent
modulo m, abbreviating this as 2 = b (mod m), precisely whenm | (a —b).

Theorem 3: The following are equivalent:
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2. amodm = bmodm
3. dke Z such thata = b + km

Theorem 4: Ifa =b (mod m)and c =d (mod m), thena+c=b+d (mod m) and ac = bd
(mod m).

Note: It is this theorem which justifies the insertion of mod functions in additive/multiplicative
operations above.

Example: Find 2% mod 5.

Note: The theorem above does not say that ac = bc (mod ()m) allows you to conclude a = b
(mod m).

Equivalence classes modulo m; Z,,

If you pick a modulus m, the Division Algorithm ensures that the range of the mod function
f:Z — Z given by f(n) = n mod mis Z,, = {0,1,2,...,m — 1}. That is, all integers a are
equivalent to some element in Z,, modulo m. For instance, relative to modulus m = 5 all the
numbers

...,—7,-2,3,8,13,...
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