Esther, Bobac, Ngozi, Ben, Matt, Antonio

Math 251, Mon 15-Nov-2021 -- Mon 15-Nov-2021 Discrete Mathematics Fall 2021

Monday, November 15th 2021 ------------------------------- Wk 12, Mo Topic:: Modular arithmetic Read:: Rosen 4.1 HW[[___ W] _ModularArithmetic due tues.

This chapter: investigate number theory---integers, primes, congruences, etc.

Encryption RSA

Divisors and multiples

Definition 1: Let *a*, *b* be integers. We say *a* **divides** *b*, or *a* | *b*, precisely when there exists an integer *c* so that $ac = b$. When the negation of *a* | *b* holds—that is, when no integer *c* exists so that $ac = b$ —we write $a \nmid b$.

 77 4 15 $-3|24$

Remarks:

- When *a* | *b*, integers, we say *a* is a **divisor** of *b*.
- The set of divisors of *b* lie between $(-b)$ and *b*.
- The set of **common divisors** to integers *b* and *c* looks like $D = \{a \in \mathbb{Z} : (a \mid b) \wedge (a \mid c)\}.$ Among the common divisors, *D* has a largest element, called the **greatest common divisor**, or $gcd(b, c)$.
- The set of **common multiples** of integers *b* and *c* looks like $M = \{m \in \mathbb{Z} : (b \mid m) \wedge (c \mid m)\}.$ Among the common multiples, *M* has a smallest positive element, called the **least common multiple**, or $lcm(b, c)$.

Call m a multiple of k if b $\Big\}m$

Divisors of 12

 $12 - 6 - 4 - 3 - 2 - 1, 1, 2, 5, 4, 6, 12$

Example 1:

Find the gcd and lcm of 21560 and 8190.

$$
21560 = 2.5.72 \cdot 11
$$

\n
$$
= 23 \cdot 5.72 \cdot 11 \cdot 13
$$

\n
$$
= 23 \cdot 5.72 \cdot 11 \cdot 13
$$

\n
$$
= 21 \cdot 32 \cdot 5.72 \cdot 11 \cdot 13
$$

\n
$$
= 21 \cdot 32 \cdot 5.72 \cdot 11 \cdot 13
$$

\n
$$
= 21 \cdot 32 \cdot 5.72 \cdot 11 \cdot 13
$$

\n
$$
= 21 \cdot 32 \cdot 5.72 \cdot 11 \cdot 13
$$

\n
$$
= 21 \cdot 32 \cdot 5.7 \cdot 11 \cdot 13
$$

\n
$$
= 21 \cdot 32 \cdot 5.7 \cdot 11 \cdot 13
$$

\n
$$
= 21 \cdot 32 \cdot 5.7 \cdot 11 \cdot 13
$$

\n
$$
= 21 \cdot 32 \cdot 5.7 \cdot 11 \cdot 13
$$

\n
$$
= 21 \cdot 32 \cdot 5.7 \cdot 11 \cdot 13
$$

\n
$$
= 23 \cdot 22 \cdot 11 \cdot 13
$$

\n
$$
= 23 \cdot 22 \cdot 11 \cdot 13
$$

\n
$$
= 23 \cdot 23 \cdot 11 \cdot 13
$$

\n
$$
= 23 \cdot 23 \cdot 11 \cdot 13
$$

Theorem 1 (Fundamental Theorem of Arithmetic): Every positive integer $a \ge 2$ is either prime or the product of primes:

$$
a=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}.
$$

If *a*, *b* are positive integers with prime factorizations

$$
a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}
$$
 and $b = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$

(where, as needed, some α_j , β_j may be zero), then among all common divisors *d* of *a* and *b* (i.e, numbers which satisfy $(d | a) \wedge (d | b)$, the **greatest common divisor** is

$$
\gcd(a,b)=p_1^{\min(\alpha_1,\beta_1)}p_2^{\min(\alpha_2,\beta_2)}\cdots p_k^{\min(\alpha_k,\beta_k)}.
$$

Likewise, among all common multiples *m* of *a* and *b* (i.e., numbers which satisfy *a* | *m* and *b* | *m*), the **least common multiple** is

$$
\operatorname{lcm}(a,b)=p_1^{\max(\alpha_1,\beta_1)}p_2^{\max(\alpha_2,\beta_2)}\cdots p_k^{\max(\alpha_k,\beta_k)}.
$$

Note: $gcd(a, b) \cdot lcm(a, b) = ab$.

Which among the following appear to be true claims?

 $F_{\alpha\alpha}$ • Let $n, d \in \mathbb{Z}^+$, and $A = \{a \in \mathbb{Z}^+ : (a \leq n) \wedge (d \mid a)\}.$ Then $|A| = \lceil n/d \rceil$. Counterexample $n = 50$, $d = 10$

•
$$
\forall a \in \mathbb{Z}^+, \forall b \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+,
$$

\n $\forall a \in \mathbb{Z}^+, \forall b \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+,$
\n $\forall a \in \mathbb{Z}^+, \forall b \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall b \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall b \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \in \mathbb{Z}^+.$
\n $\forall a \in \mathbb{Z}^+, \forall c \$

Theorem 2 (Division Algorithm): Let *a* be an integer and *d* a positive integer. There exist unique integers *q*, *r* with $0 \le r < d$ such that

$$
a=dq+r.
$$

Note that

(a mod d)
intition of and d (not include 1)
function of the equation
$$
cos 3
$$
 $divides by d.$

- The remainder *r* is the output of the mod function: $r =$
- If, at the end of a calculation, you intend to perform the mod function, it can be inserted at various additive/multiplicative points along the way:

$$
(37)(63) - 584 \text{ mod } 11 = (37 \text{ mod } 11)(63 \text{ mod } 11) - (58 \text{ mod } 11)4 \text{ mod } 11
$$

$$
= (4)(8) \text{ mod } 11 - (3)4 \text{ mod } 11
$$

$$
= 32 \text{ mod } 11 - 81 \text{ mod } 11
$$

$$
= 10 - 4 = 6.
$$

It doesn't work reliably in exponents, however:

$$
6^{17} \text{ mod } 13 = 6 \cdot (6^2 \text{ mod } 13)^8 \text{ mod } 13 = 6 \cdot 10^8 \text{ mod } 13
$$

= $6 \cdot (10000 \text{ mod } 13)^2 \text{ mod } 13 = 6 \cdot 3^2 \text{ mod } 13 = 2$,

but

$$
6^{17} \text{mod } 13 \text{ mod } 13 = 6^4 \text{mod } 13 = 9.
$$

Trw / False	17 \equiv 5 (mod 7) \equiv	4. $17 \equiv$ 5 (mod 12) \top
MATH 251 Notes	2. $17 \equiv$ 5 (mod 3) \top	
Modular congruence	3. $17 \equiv$ 5 (mod 4) \top	

Definition 2: Let $a, b \in \mathbb{Z}$ and $m \ge 2$ be an integer. We say that a and b are congruent **modulo** *m*, abbreviating this as $a \equiv b \pmod{m}$, precisely when $m \mid (a - b)$.

Theorem 3: The following are equivalent:

1. $a \equiv b \pmod{m}$ 2. *a* mod *m* " *b* mod *m* 3. $\exists k \in \mathbb{Z}$ such that $a = b + km$ Since 36 mul $11 = 3$ then $36 = 80$ (mod 1)
and 80 mod $11 = 3$

Theorem 4: If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd$ $(mod m).$

Note: It is this theorem which justifies the insertion of mod functions in additive/multiplicative operations above.

Example: Find 2^{8888} mod 5.

Note: The theorem above does *not* say that $ac \equiv bc \pmod{(m)}$ allows you to conclude $a \equiv b$ $(mod m).$

Equivalence classes modulo *m***;** Z*^m*

If you pick a modulus *m*, the Division Algorithm ensures that the range of the mod function *f* : $\mathbb{Z} \to \mathbb{Z}$ given by $f(n) = n \mod m$ is $\mathbb{Z}_m = \{0, 1, 2, \ldots, m-1\}$. That is, all integers *a* are equivalent to some element in \mathbb{Z}_m modulo *m*. For instance, relative to modulus $m = 5$ all the numbers

 \ldots , -7 , -2 , 3, 8, 13,...