Oscar, Brayden, Nathan

Math 251, Fri 20-Nov-2020 -- Fri 20-Nov-2020
Discrete Mathematics
Fall 2020

Friday, November 20th 2020

Wk 12, Fr
Topic:: Euclidean algorithm
Read:: Rosen 4.3
Topic:: Solving congruences
Read:: Rosen 4.4

$$
\begin{aligned}
& \text { RSA encryption needs } \\
& \text { - fast modular exponentiation } \\
& \text { - solving modular equations }
\end{aligned}
$$

Arithmetic $\bmod m \quad($ need integer $m \geq 2$)
Define \mathbb{Z}_{m} :
both a set of integurs $\{0,1,2,3, \ldots, m-1\}$
along with operations
$a+m b=a+b \bmod m$
$a \cdot m b=a b \bmod m$

Ex. Work $\bmod 4 \quad \mathbb{Z}_{4}=\{0,1,2,3\}$

$+_{4}$	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

4_{4}	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

$27 \cdot(-5) \equiv 3 \cdot(-1)=-3 \mathrm{mr} 14$ $=1$.

In \mathbb{R}, the solution x to $a x=1$ is called the multiplicative inverse of a.

In mod 4 arithmetic, 3 is its own multiplicative inverse.

Solving congruence equations
Ex.J Solve

$$
\begin{aligned}
& 3 x+1 \equiv 2(\bmod 4) \\
& 3 x \equiv 1 \quad(\bmod 4) \quad \text { otter subtracting }
\end{aligned}
$$

Now, since 3 is multiplicative inv. (mod 4) of itself, can multiply both sides by 3

$$
\begin{aligned}
& 3.3 x \equiv 3.1(\bmod 4) \\
& \rightarrow 1 x \equiv 3(\bmod 4)
\end{aligned}
$$

Sola. $x \equiv 3(\bmod 4)$
(really means all of these solve:

$$
\ldots,-5,-1,3,7,11,15, \ldots
$$

Hard: Solan

$$
19 x \equiv 51(\bmod 420)
$$

Underlying question: whet is 19 s multi. inv. (mod 420)?

Euclidean Algorithm

Our main purpose in learning it: You use it to determine $\operatorname{gcd}(a, b)$.
How it works:

1. Start with two (usually positive) integers a, b. Call the larger one r_{0}, the smaller r_{1}.
2. Iterate the division algorithm:

- Divide r_{0} by r_{1}-that is, find integers q_{1} and r_{2} (Note: $0 \leqslant r_{2}<r_{1}$) so that

$$
r_{0}=q_{1} r_{1}+r_{2}
$$

- Shift roles r_{1} into the former role of r_{0}, r_{2} into the former role of r_{1}, and repeat, using the division algorithm to find q_{2} and r_{3}. (Note: $0 \leqslant r_{3}<r_{2}$.)

$$
r_{1}=q_{2} r_{2}+r_{3}
$$

We continue to shift roles of the r_{j} and repeat. This process produces a strictly decreasing sequence

$$
r_{0}, r_{1}, r_{2}, \ldots, r_{n}
$$

until a remainder, call it r_{n+1}, finally is zero, which is our stopping criterion.

Example 1:

Perform the Euclidean algorithm with $a=276, b=324$, to find $\operatorname{gcd}(276,324)$.
Start by labeling larger number r_{∞}, smaller r_{1}. $r_{0}=324, \quad r_{1}=276$

Notes:

- Call my remainder $r_{2}=48$.
- Any divisor of two-out-of-three in list r_{0}, r_{1}, r_{2} is a divisor of all three.
- $r_{2}<r_{1}$

See website https://www. extendedquclideanalgorithm.com/calculator.php.

Notes:

- Call $\sigma_{3}=36$
- Any divisor of two -out-of-three in list r_{1}, r_{2}, r_{3} is a diubsor of r_{0}, r_{1}, r_{2} and r_{3}
- $r_{3}<r_{2}$

\checkmark

$$
\begin{aligned}
\text { gad } & =\text { last nonzero venciuder } \\
& =12 .
\end{aligned}
$$

Example 2:
Perform the Euclidean algorithm with $a=4312, b=585$.

$$
\begin{aligned}
& r_{0}=4312, \quad r_{1}=585 \\
& 4312=7 . \quad(585)+217 \\
& \begin{array}{l}
585=\frac{2}{1}(217)+151 r_{3} \\
217=-r_{4}
\end{array} \\
& 151=2(66)+19-r_{5} \\
& 66=3(19)+9-r_{6} \\
& 19=2(9)+2-r_{7} \\
& 9=9(1)+0
\end{aligned}
$$

$\operatorname{gcd}(4312,585)=1$, say 4312 and 585 are relatively prime.
Foreshadow: This means 585 has a multipliatiore inverse mod 4312.

Extended Euclidean Algorithm

Our main purpose in learning it.
to write $\operatorname{gcd}(a, b)$ as a linear combination $t a+s b$
Key therm basel on our Encl af y, work
Ex.) Above we found $\operatorname{gcd}(324,276)=12$
In preparation, solve for remainder

$$
\begin{aligned}
& 48=36 \cdot 1+12 \rightarrow 12=48-36 \\
& 276=48 \cdot 5+36 \rightarrow 36=276-(48)(5) \\
& 324=276 \cdot 1+48 \rightarrow 48=324-276
\end{aligned}
$$

Now carry out extended Ere. Alg - Writing $12=t \cdot 324+s \cdot 276$

$$
w / s, t \in \mathbb{Z} .
$$

$$
\begin{aligned}
& 12=48-36 \\
&=48-[276-(48)(5)] \\
&=(48)(6)-276 \\
&=(324-276)(6)-276 \\
&=(324) 6+(276)(-7) \\
& p_{a=324}^{\quad} \quad t=6 \quad b=276 \quad \Delta=-7
\end{aligned}
$$

