

Solving congruences

Consider the function

$$
f(x)=7 x+4 \bmod 12
$$

The implied domain of this function is the set of integers, and the codomain is the list of remainders $\{0,1,2, \ldots, 11\}$ which are possible when dividing an integer by 12 . That is, the codomain is \mathbb{Z}_{12}. When we look to solve the (congruence) equation

$$
\begin{equation*}
7 x+4 \equiv 9 \quad(\bmod 12) \tag{1}
\end{equation*}
$$

we seek to describe those inputs x to f which produce the particular output 9 .
From these facts

1. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m)$.
2. If $a \equiv b(\bmod m)$ and $c \in \mathbb{Z}$, then $a c \equiv b c(\bmod m)$.
we know that we can perform some of the basic steps of algebra. With regards to the example equation (1), we solve by

- adding 8 to both sides, which gets rid of the +4 since $(8+4) \bmod 12=0$

$$
\left.\begin{array}{ll}
\text { new LHS : } 7 x+4+8 \equiv 7 x+12 \equiv 7 x \quad(\bmod 12) \\
\text { new RHS : } & 9+8 \equiv 17 \equiv 5 \quad(\bmod 12)
\end{array}\right\} \quad \Rightarrow \quad 7 x \equiv 1 \quad(\bmod 12)
$$

- multiplying both sides by 7 , since $(7 \cdot 7) \bmod 12=1$.
$\left.\begin{array}{ll}\text { new LHS : } & 7 \cdot 7 x \equiv 49 x \equiv x \quad(\bmod 12) \\ \text { new RHS : } & 7 \cdot 5 \equiv 11 \quad(\bmod 12)\end{array}\right\} \quad \Rightarrow \quad x \equiv 11 \quad(\bmod 12)$.
These two steps have led to the solution: the integers x which satisfy Equation (1) are those which are equivalent to $11(\bmod 12)$.

The general linear congruence equation, with modulus $m \geqslant 2$, looks like

$$
\begin{equation*}
a x+b \equiv n \quad(\bmod m) \tag{2}
\end{equation*}
$$

It can be solved in much the same way as above-adding $(-b)$, the additive inverse of b, to both sides, then multiplying by the multiplicative inverse of a-provided that $\operatorname{gcd}(a, m)=1$ (a sufficient condition for a to have a multiplicative inverse $(\bmod m))$.

Modular Arithmetic in check digits
ISBN-10 nos.

$$
\begin{aligned}
& 381 \times 52314 \\
& x_{1}=3, x_{2}=8, x_{3}=1, x_{4}=10, \cdots, x_{9}=4, x_{10}=?
\end{aligned}
$$

To find x_{10}, use that any valid ISBN-10 satisfies

$$
\sum i x_{i} \bmod 11=0 .
$$

Can compute

$$
\begin{aligned}
& 1(3)+2(8)+3(1)+4(10)+5(5)+6(2) \\
& +7(3)+8(1)+9(4)+10 x_{10} \bmod 11 \\
& =-1+10 x_{10} \bmod 11=0
\end{aligned}
$$

So, In trying to solve $10 x-1 \equiv 0\left(m_{0} d 11\right)$
or

$$
10 x \equiv 1(\bmod 11)
$$

Can reliably finish this, but also move generally equations like

$$
a x+b \equiv c(\bmod m)
$$

wherever I can find multi inv e of a (mod).

Fact: $a \in \mathbb{Z}_{m}$ has a multiplicative inverse of $\operatorname{gcd}(a, m)=1$.

Ex.
(a) Use Endidian algorithm to find $\operatorname{gcd}(34,315)$.

$$
r_{0}=315, \quad r_{1}=34
$$

(1) $315=34 \cdot 9+\quad r_{2}=9$
(2) $34=9 \quad 3+7 \quad r_{3}=7$
(3) $\quad 9=7 \cdot 1+2 \quad r_{4}=2$
(4) $7=2 \cdot 3+1 \quad r_{5}=1=\operatorname{gcd}(34,315)$
(b) Use the extended $E A$ to write $g c!(34,315)$ as a weighted sum $t r_{0}+s r_{1} \quad(s, t \in \mathbb{Z})$.
(4) rewritten becomes

$$
1=7-2.3 \quad \text { or } \quad 1=r_{3}-3 r_{4}
$$

(3) $9=7 \cdot 1+2$ can be rewritten to say

$$
2=9-7 \quad \text { or } \quad r_{4}=r_{2}-r_{3}
$$

can insert this for r_{4} in (k)

$$
\mid=r_{3}-3 r_{4} \text { becomes } \mid=r_{3}-3\left(r_{2}-r_{3}\right)
$$

Combining like turns:

$$
1=4 r_{3}-3 r_{2} \quad(4 \lambda)
$$

Next, (2) $34=9.3+7$ can be rewritten to say

$$
\begin{aligned}
& 7=34-(3 \times 9) \quad \text { or } \quad r_{3}=\underbrace{r_{1}-3 r_{2}}_{\substack{\text { insert as } r_{3} \\
\text { in }(t *)}} \\
& 1=4 r_{3}-3 r_{2} \text { becomes } \quad 1=4\left(r_{1}-3 r_{2}\right)-3 r_{2}
\end{aligned}
$$

or

$$
1=4 r_{1}-15 r_{2} \quad(t k)
$$

Finally, (1) $315=34 \cdot 9+9$ can be rewritten as

$$
\begin{aligned}
& q=315-(9)(34) \quad \text { or, } \quad r_{2}=\underbrace{r_{0}-q_{r}}_{\text {insect as } r_{2}} \\
& \text { in (} x \text { 她) } \\
& 1=4 r_{1}-15 r_{2} \text { becomes } \quad 1=4 r_{1}-15\left(r_{0}-9 r_{1}\right) \\
& 1=139 r_{1}-15 r_{b}
\end{aligned}
$$

Upshot $\quad 1=(139)(34)-(15)(315)$
(c) What is malt. inv, of 34 in \mathbb{Z}_{315} ?

Aus.: 139, Since

$$
(139)(34)=31515+1
$$

(d) Solve the congruence for x :

$$
34 x \equiv 8(\bmod 315)
$$

Knowing 34 has malt. inv. 139, multiply both sides by it:

$$
\begin{aligned}
& 34 x \equiv 8(\bmod 315) \\
&(139)(34) x \equiv 1 x \equiv(139)(8) \equiv 1112 \\
& x \equiv 167 \bmod (315)
\end{aligned}
$$

You try: (a) Write ged $(39,200)$ as weighted sum $t-200+s .39$

$$
1=\operatorname{gcd}(39,200)=8(200)-41(39)
$$

(b) Does 39 have a mut, inv. mod 200? A: Yes.
(c) In terms of "representative" nos, mod 200

$$
R_{200}=\{0,1,2, \ldots, 199\}
$$

what is the mull. inv. of 39?
$-41 \equiv 159 \bmod (200)$, so 159 is 39^{\prime} s malt. inv.

For small integers a, m it is generally possible to figure out

- what the $\operatorname{gcd}(a, m)$ is, and
- when $\operatorname{gcd}(a, m)=1$, which number $\bar{a} \in \mathbb{Z}_{m}$ is the multiplicative inverse-i.e., satisfies $a \bar{a} \equiv 1$ $(\bmod m)$.

When these cannot be determined so easily, we resort to the Euclidean and Extended Euclidean Algorithms. ${ }^{1}$

Example 3:

Show that the integers 311 and 6215 are relatively prime, and then find the multiplicative inverse of $311(\bmod 6215)$.

Answer: We perform steps of the Euclidean algorithm (left side) and, rewrite (right side) the equations to express the newest remainder r_{j} in terms of two prior ones r_{j-1} and r_{j-2} (helpful steps for the extended Euclidean algorithm):

$$
\begin{array}{lll}
6215=(19)(311)+306 & \Rightarrow & 306=(1)(6215)-(19)(311) \\
311=(1)(306)+5 & 5=(1)(311)-(1)(306) \\
306=(61)(5)+1 & & 1=(1)(306)-(61)(5) \\
5=(5)(1)+0 & &
\end{array}
$$

The last nonzero remainder is $\operatorname{gcd}(6215,311)$, and since it is 1 , the two numbers are relatively prime.

To find the multiplicative inverse, we use the equations, starting at the bottom, on the righthand side, continually substituting the next-higher equation:

$$
\begin{aligned}
1 & =(1)(306)-(61)(5) \quad \text { (bottom equation on the right) } \\
& =(1)(306)-(61)[(1)(311)-(1)(306)]=(62)(306)-(61)(311) \\
& =(62)[(1)(6215)-(19)(311)]-(61)(311)=(62)(6215)-(1239)(311) \\
& =(62)(6215)+(-1239)(311)
\end{aligned}
$$

If we consider the operations above as happening (mod 6215), we have

$$
(62)(6215)+(-1239)(311) \equiv(4976)(311) \equiv 1 \quad(\bmod 6215) .
$$

Thus, 4976 is the multiplicative inverse $(\bmod 6215)$ of 311 .

Example 4: Affine ciphers

[^0]Affine ciphers are based on functions of the form

$$
f(x):=a x+b \bmod 26 .
$$

When $\operatorname{gcd}(a, 26)=1$, such a function $f: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26}$ is bijective and is, thus, invertible.
One equates the 26 letters of the English alphabet with the numbers $0-25: a \leftrightarrow 0, b \leftrightarrow 1, \ldots$, $z \leftrightarrow 25$. This makes a natural map between simple strings of letters and finite sequences of integers, such as

$$
\text { the word pencil } \leftrightarrow \quad 15,4,13,2,8,11 \text {, }
$$

which, in its numerical equivalent, could hardly be said to be "encrypted." However, if we let $y=f(x)$, then an encrypted version of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ would be $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}$, with

$$
\begin{array}{ll}
x_{1}=15: & y_{1}=f(15)=15 a+b \bmod 26, \\
x_{2}=4: & y_{2}=f(4)=4 a+b \bmod 26, \\
x_{3}=13: & y_{3}=f(13)=13 a+b \bmod 26, \\
x_{4}=2: & y_{4}=f(2)=2 a+b \bmod 26, \\
x_{5}=8: & y_{5}=f(8)=8 a+b \bmod 26, \\
x_{6}=11: & y_{6}=f(11)=11 a+b \bmod 26 .
\end{array}
$$

In the case where $a=19$ and $b=4$, these encrypted values would be $3,2,17,16,0,5$, though we would generally transmit this as its alphabetic equivalent dcrqaf.

The person on the receiving end needs the inverse function to f in order to perform decryption of the message. We can obtain it in the same manner described above-by solving the congruence equation $a x+b \equiv y(\bmod 26)$. If \bar{a} is the multiplicative inverse of $a(\bmod 26)$, then

$$
a x+b \equiv y \quad(\bmod 26) \quad \Rightarrow \quad x \equiv \bar{a}(y-b) \quad(\bmod 26) .
$$

One needs $\operatorname{gcd}(a, 26)=1$, of course, so that \bar{a} exists, in which case $g(y)=\bar{a}(y-b) \bmod 26$ is the inverse function to $f(x)=a x+b \bmod 26$.

You can explore affine ciphers without the tedium of all the letter-to-number conversions at http://www.calvin.edu/~scofield/courses/m100/materials/scriptForms/affineTranslator.shtml a link which appears on the class webpage. While affine ciphers are a neat application of congruences, they are quite easily broken.

Systems of linear congruences

A system of congruences is nothing more than multiple individual congruences, with the requirement that any solution x must be an integer which simultaneously satisfies them all. First, an

[^0]: ${ }^{1}$ An app that implements both the Euclidean and Extended Euclidean Algorithms is linked to the class webpage. The direct url is https://www.extendedeuclideanalgorithm.com/calculator.php.

