MATH 251 Notes
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Solving congruences

Consider the function
f(x) = 7x+4 mod 12.

The implied domain of this function is the set of integers, and the codomain is the list of remainders
{0,1,2,...,11} which are possible when dividing an integer by 12. That is, the codomain is Z5.

When we look to solve the (congruence) equation

7x+4=9 (mod 12), (1)
we seek to describe those inputs x to f which produce the particular output 9.
From these facts

1. Ifa=b (mod m)and c=d (mod m), then a+c=b+d (mod m).
2. Ifa=b (mod m) and c € Z, then ac = bc (mod m).

we know that we can perform some of the basic steps of algebra. With regards to the example
equation (1), we solve by

- adding 8 to both sides, which gets rid of the +4 since (8 +4) mod 12 =0

newLHS: 7x+4+8=7x+12=7x (m0d12>} 7x=1 (mod 12)
= = mo .

new RHS: 9+8=17=5 (mod 12)
- multiplying both sides by 7, since (7 - 7) mod 12 = 1.

newLHS: 7.7x=49x=x (mod 12) } x=11 (mod 12)

new RHS: 7-5=11 (mod 12)

These two steps have led to the solution: the integers x which satisfy Equation (1) are those which
are equivalent to 11 (mod 12).

The general linear congruence equation, with modulus m > 2, looks like
ax+b=mn (mod m). (2)

It can be solved in much the same way as above—adding (—b), the additive inverse of b, to both
sides, then multiplying by the multiplicative inverse of a—provided that Megt gcd(a,m) = 1 (a
sufficient condition for a to have a multiplicative inverse (mod m)).
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MATH 251 Notes

For small integers a, m it is generally possible to figure out

e what the ged(a, m) is, and
e when gcd(a, m) = 1, which number 2 € Z,, is the multiplicative inverse—i.e., satisfies aa = 1
(mod m).

When these cannot be determined so easily, we resort to the Euclidean and Extended Euclidean
Algorithms.!

Example 3:

Show that the integers 311 and 6215 are relatively prime, and then find the multiplicative
inverse of 311 (mod 6215).

Answer: We perform steps of the Euclidean algorithm (left side) and, rewrite (right side) the
equations to express the newest remainder r; in terms of two prior ones r;_1 and r;_ (helpful
steps for the extended Euclidean algorithm):

6215 = (19)(311) + 306 = 306 = (1)(6215) — (19)(311)
311 = (1)(306) + 5 = (1)(311) — (1)(306)
306 = (61)(5) + 1 = (1)(306) — (61)(5)

5= (5)(1) +0

The last nonzero remainder is gcd(6215,311), and since it is 1, the two numbers are relatively

prime.

To find the multiplicative inverse, we use the equations, starting at the bottom, on the right-
hand side, continually substituting the next-higher equation:

1 = (1)(306) — (61)(5) (bottom equation on the right)
= (1)(306) — (61)[(1)(311) — (1)(306)] = (62)(306) — (61)(311)
—  (62)[(1)(6215) — (19)(311)] — (61)(311) = (62)(6215) — (1239)(311)
= (62)(6215) + (—1239)(311)

If we consider the operations above as happening (mod 6215), we have
(62)(6215) + (—1239)(311) = (4976)(311) =1 (mod 6215).

Thus, 4976 is the multiplicative inverse (mod 6215) of 311.

Example 4: Affine ciphers

1An app that implements both the Euclidean and Extended Euclidean Algorithms is linked to the class webpage.
The direct url is https://www.extendedeuclideanalgorithm.com/calculator.php.




MATH 251 Notes

Affine ciphers are based on functions of the form
f(x):=ax+b mod 26.
When ged(a, 26) = 1, such a function f: Zys — Zoe is bijective and is, thus, invertible.

One equates the 26 letters of the English alphabet with the numbers 0-25: 2 < 0,b < 1, ...,
z < 25. This makes a natural map between simple strings of letters and finite sequences of

integers, such as
the word pencil < 15,4,13,2,8,11,

which, in its numerical equivalent, could hardly be said to be “encrypted.” However, if we let
y = f(x), then an encrypted version of x1, x2, X3, X4, X5, X¢ would be y1, y2, Y3, Ya, Y5, Y6, with

x;p =15 y1 = f(15) = 152 + b mod 26,
Xp =4: yzzf(4)=4ﬂ+b mod 26,

x3=13:  y3=f(13) = 13a+b mod 26,
X4 =2 ya= f(2) =2a+b mod 26,
x5 =8: ys = f(8) = 8a+b mod 26,
Xe=11:  ye=f(11)=1la+b mod 26.

In the case where a4 = 19 and b = 4, these encrypted values would be 3,2,17, 16,0, 5, though
we would generally transmit this as its alphabetic equivalent dcrgaf.

The person on the receiving end needs the inverse function to f in order to perform decryption
of the message. We can obtain it in the same manner described above—by solving the
congruence equation ax + b = y (mod 26). If 7 is the multiplicative inverse of a (mod 26),
then

ax+b=y (mod 26) = x=a(y—b) (mod 26).

One needs gcd(a, 26) = 1, of course, so that a exists, in which case g(y) = a(y —b) mod 26 is

the inverse function to f(x) = ax +b mod 26.

You can explore affine ciphers without the tedium of all the letter-to-number conversions at
http://www.calvin.edu/ scofield/courses/m100/materials/scriptForms/affineTranslator.shtml
a link which appears on the class webpage. While affine ciphers are a neat application of con-
gruences, they are quite easily broken.

Systems of linear congruences

A system of congruences is nothing more than multiple individual congruences, with the require-
ment that any solution x must be an integer which simultaneously satisfies them all. First, an




