RSA Encryption

The two main requisite skills are

- finding multiplicative inverses mod(m)main tool is the Extended Euclidean Algorithm
- modular exponentiation We have seen/worked through an algorithm called **fast modular exponentiation**: very generally applicable

Modular exponentiation: some more tools

Theorem: [Fermat's Little Theorem] If p is prime, and $a \in \mathbb{Z}$, then $a^p \equiv a \pmod{p}$.

Ex.)

$$2^{17} \mod 17 = 2$$

 $100^{17} \mod 17 \equiv 100 \pmod{17}$
EX.)
 $55^{73} \mod 7$
 $55^{73} = 55^{70} \cdot 55^{3} = (55^{7})^{10} \cdot 55^{3}$
 $\equiv (55)^{10} \cdot 55^{3} \pmod{7}$
 $\equiv 55^{7} \cdot 55^{6} \equiv 55 \cdot 55^{6} \equiv 55^{7}$
 $\equiv 55 \pmod{7}$
 $g^{7} \equiv 55 \pmod{7}$
 $g^{7} \equiv 4 \pmod{7}$
Some consequences that follow, if $p \nmid a$
 q^{rine} , q^{Xa} , $tr q^{ti}$
 $q^{r'} \equiv 1 \pmod{7}$.

Some consequences that follow, if $p \nmid a$

- If p is prime, then $a^{p-1} \equiv 1 \pmod{p}$.
- If p is prime, then a^{p-2} is the multiplicative inverse of a in \mathbb{Z}_p .
- If gcd(a, p) = 1 and $a^{p-1} \not\equiv 1 \pmod{p}$, then p is not prime.

Ex. Find multi-inverse of 11 in \mathbb{Z}_{17} . Since 17 is prime and 17 / 11, we can conclude $11 \stackrel{16}{=} = 1 \pmod{17}$ Thus $11 \cdot 11^{15} \equiv 1 \pmod{17}$ $\implies 11^{15} \mod{17}$ is mult. inv. of 11 in \mathbb{Z}_{17} . **Definition**: As functions $\mathbb{Z}^+ \to \mathbb{Z}$, we define

• the **prime-counting function** π so that

$$\pi(n) = |\{p \text{ is prime } | p \leq n\}|.$$

Due to the great interest in primes, this function was thoroughly investigated, with a major breakthrough being the **prime number theorem** (see p. 262).

• the **Euler totient function** φ so that

$$\varphi(n) = |\{a \in \mathbb{Z}^+ \mid a \leq n \text{ and } \gcd(a, n) = 1\}|.$$

Properties of φ :

- If p is prime, then $\varphi(p) = \mathcal{P}_{\alpha} \left(1 \frac{1}{\mathcal{P}} \right)$ If p is prime, then $\varphi(p^{\alpha}) = \mathcal{P} \left(1 \frac{1}{\mathcal{P}} \right)$ If gcd(a, b) = 1, then $\varphi(ab) = \varphi(a)\varphi(b)$.
- If the prime factorization of n is

$$n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_k^{\alpha_k},$$

then

$$\varphi(n) =$$

$$\begin{split} \varphi(n) &= \varphi(p_{1}^{\alpha_{1}}, p_{k}^{\alpha_{2}} \dots p_{k}^{\alpha_{k}}) = \varphi(p_{1}^{\alpha_{1}}) \cdot \varphi(p_{k}^{\alpha_{1}}) \cdots \varphi(p_{k}^{\alpha_{k}}) \\ &= p_{1}^{\alpha_{1}} \left(1 - \frac{1}{p_{1}}\right) \cdot p_{2}^{\alpha_{2}} \left(1 - \frac{1}{p_{2}}\right) \cdots p_{k}^{\alpha_{k}} \left(1 - \frac{1}{p_{k}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}^{\alpha_{2}}} \cdots p_{k}^{\alpha_{k}} \left(1 - \frac{1}{p_{1}}\right) \left(1 - \frac{1}{p_{2}}\right) \cdots \left(1 - \frac{1}{p_{k}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}^{\alpha_{2}}} \cdots p_{k}^{\alpha_{k}} \left(1 - \frac{1}{p_{1}}\right) \left(1 - \frac{1}{p_{2}}\right) \cdots \left(1 - \frac{1}{p_{k}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{k}}\right) = 1 \text{ (mod } n). \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(1 - \frac{1}{p_{k}}\right) \cdots \left(1 - \frac{1}{p_{k}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{1}}\right) \left(1 - \frac{1}{p_{2}}\right) \cdots \left(1 - \frac{1}{p_{k}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{1}}\right) \left(\frac{1 - \frac{1}{p_{1}}}{p_{2}}\right) \cdots \left(1 - \frac{1}{p_{k}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{1}}\right) \left(\frac{1 - \frac{1}{p_{1}}}{p_{1}}\right) \left(1 - \frac{1}{p_{1}}\right) \cdots \left(1 - \frac{1}{p_{k}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{1}}\right) \left(\frac{1 - \frac{1}{p_{1}}}{p_{2}}\right) \cdots \left(1 - \frac{1}{p_{k}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{1}}\right) \left(\frac{1 - \frac{1}{p_{1}}}{p_{2}}\right) \cdots \left(1 - \frac{1}{p_{k}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{2}}\right) \left(\frac{1 - \frac{1}{p_{1}}}{p_{2}}\right) \cdots \left(1 - \frac{1}{p_{k}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{2}}\right) \left(\frac{1 - \frac{1}{p_{2}}}{p_{2}}\right) \cdots \left(1 - \frac{1}{p_{k}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{2}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{2}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{2}}\right) \left(\frac{1 - \frac{1}{p_{1}}}{p_{2}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{1}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{1}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{1 - \frac{1}{p_{1}}}{p_{1}}\right) \\ &= \frac{p_{1}^{\alpha_{1}}}{p_{1}} \left(\frac{$$

 $\varphi(12) = \{1, 2, 3, 4, 5, 4, 7, 8, 9, 10, 11, 12\}$ = 4

 $\pi(12) = |\{2, 3, 5, 7, 11\}| = 5$

Ex.) Find mult. inv. of 37 in
$$\mathbb{Z}_{120}$$
.
Since $\varphi(120) = 32$, and $\gcd(37, 120) = 1$, Euler's Then says
 $37^{32} \equiv 1 \pmod{120}$
That is,
 $37 \cdot 37^{31} \equiv 1 \pmod{120}$
which means
 $37^{31} \mod{120}$
is the multiplicative inverse of 37, in \mathbb{Z}_{120} .