RSA Encryption

The two main requisite skills are

- finding multiplicative inverses $\bmod (m)$ main tool is the Extended Euclidean Algorithm
- modular exponentiation

We have seen/worked through an algorithm called fast modular exponentiation: very generally applicable

Modular exponentiation: some more tools

Theorem: [Fermat's Little Theorem] If p is prime, and $a \in \mathbb{Z}$, then $a^{p} \equiv a(\bmod p)$.
Ex.

$$
\begin{aligned}
& 2^{17} \bmod 17=2 \\
& 100^{17} \bmod 17=100(\bmod 17)
\end{aligned}
$$

$E \times$.

$$
\begin{aligned}
55^{73} \bmod & 7 \\
55^{73} & =55^{70} \cdot 55^{3}=\left(55^{7}\right)^{10} \cdot 55^{3} \\
& \equiv\left(55^{10} \cdot 55^{3}(\bmod 7)\right. \\
& =55^{7} \cdot 55^{6} \equiv 55 \cdot 55^{6} \equiv 55^{7} \\
& =55(\bmod 7)
\end{aligned}
$$

Some consequences that follow, if $p \nmid a$

- If p is prime, then $a^{p-1} \equiv 1(\bmod p)$.

- If p is prime, then a^{p-2} is the multiplicative inverse of a in \mathbb{Z}_{p}.
- If $\operatorname{gcd}(a, p)=1$ and $a^{p-1} \not \equiv 1(\bmod p)$, then p is not prime.

Ex. Find mult. inverse of 11 in \mathbb{Z}_{17}.
Since 17 is prime ant $17 \nmid 11$, we can conclude

$$
11^{16} \equiv 1(\bmod 17)
$$

Thus

$$
11 \cdot 1^{15} \equiv 1\left(m_{0} \int 17\right)
$$

$\Rightarrow 11_{\bmod }^{15} 17$ is mult. inv. of 11 in \mathbb{T}_{17}.

$$
\pi(12)=|\{2,3,5,7,11\}|=5
$$

Definition: As functions $\mathbb{Z}^{+} \rightarrow \mathbb{Z}$, we define

$$
\begin{aligned}
\varphi(12) & =\mid\{1,2,3,4,5,6,7,8,9,10,11,12\} \\
& =4
\end{aligned}
$$

- the prime-counting function π so that

$$
\pi(n)=\mid\{p \text { is prime } \mid p \leqslant n\} \mid
$$

Due to the great interest in primes, this function was thoroughly investigated, with a major breakthrough being the prime number theorem (see p. 262).

- the Euler totient function φ so that

$$
\varphi(n)=\mid\left\{a \in \mathbb{Z}^{+} \mid a \leqslant n \text { and } \operatorname{gcd}(a, n)=1\right\} \mid
$$

Properties of φ :

- If p is prime, then $\varphi(p)=p-1$
- If p is prime, then $\varphi\left(p^{\alpha}\right)=p^{\alpha}\left(1-\frac{1}{p}\right)$
- If $\operatorname{gcd}(a, b)=1$, then $\varphi(a b)=\varphi(a) \varphi(b)$.
- If the prime factorization of n is

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}}
$$

then

$$
\varphi(n)=
$$

$$
\varphi(n)=\varphi\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}\right)=\varphi\left(p_{1}^{\alpha_{1}}\right) \cdot \varphi\left(p_{2}^{\alpha_{2}}\right) \cdots \varphi\left(p_{k}^{\alpha_{k}}\right)
$$

$$
=p_{1}^{\alpha_{1}}\left(1-\frac{1}{p_{1}}\right) \cdot p_{2}^{\alpha_{2}}\left(1-\frac{1}{p_{2}}\right) \cdots p_{k}^{\alpha_{k}}\left(1-\frac{1}{p_{m}}\right)
$$

$$
=\frac{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)}{=n}
$$

Theorem: [Euler] If $\operatorname{gcd}(a, n)=1$ then $a^{\varphi(n)} \equiv 1(\bmod n) .=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{*}}\right)$

$$
E x .] \quad 37^{67} \bmod 120
$$

Know $\varphi(120)=32$ (see next page) requiring its prime factorization

If p is prime

$$
\begin{aligned}
& \varphi(p)=|\{1,2,3, \cdots, p\}|=p-1 \\
& \varphi\left(p^{2}\right)=\{1,2,3,4, \cdots, \notin, \\
& p+1, p+2, p+3, \cdots, 2 p, \\
& 2 p+1,2 p+2, \cdots, 3 / p, \\
& \text { P路 }\} \\
& =p^{2}-p \\
& \varphi\left(p^{3}\right)=p^{3}-p^{2}
\end{aligned}
$$

generally

$$
\varphi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}=p^{\alpha}\left(1-\frac{1}{p}\right)
$$

Above, showed

$$
\varphi(n)=\varphi\left(p_{1}^{\alpha_{1}} p_{1}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}\right)=n\left(1-\frac{i}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
$$

Ex.

$$
\begin{aligned}
\varphi(120) & =\varphi\left(2^{3} \cdot 3 \cdot 5\right) \\
& =120\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) \\
& =32
\end{aligned}
$$

Ex.) Find molt, inv, of 37 in \mathbb{Z}_{120}.
Since $\varphi(120)=32$, and $\operatorname{god}(37,120)=1$, Enter', The says

$$
37^{32} \equiv 1(\bmod 120)
$$

That is,

$$
37 \cdot 37^{31} \equiv 1(\bmod 120)
$$

which means

$$
37^{31} \bmod 120
$$

is the multiplicative inverse of 37 , in \mathbb{Z}_{120}.

