RSA Encryption - culmination of Ch. 4
Have nos. to encode as different mos.
Need, prior to RSA, to turn text into nos.
"Hi."

$$
\begin{aligned}
H & \longleftrightarrow \frac{\text { AsciI }}{72}=P \\
i & \longleftrightarrow 105 \\
\cdot & \longleftrightarrow 46
\end{aligned}
$$

Can encrypt one character at a time,
More efficient / practical to form, out of a collection of characters, a longer number P :

$$
P=072105046 \quad \text { (from } 3 \text { letters) }
$$

Description of RSA.

RSA encryption starts with a numerical plaintext P and converts it into a numerical ciphertext C by

$$
C=P^{e} \bmod n .
$$

Upon receipt, C is decrypted in a similar manner using the same modulus n and a different exponent d. That is

$$
P=C^{d} \bmod n
$$

The values of n, e, and d are constructed as follows.

$$
n=p q
$$

Choose e

Key Generation.

- Randomly select two primes $p \& q$.

Share: e, n
Kep sunct: d To keep the factoring of n from defaulting to something that might be "easy", $p \& q$ should be roughly the same size. In real world implementations, they are about 150 digits long. This corresponds to " 1024 -bit encryption", the 1024 bits referring to the size of n.

- Compute $n=p q$ and $\varphi(n)=(p-1)(q-1)$. \quad e, $Q(n)$ rel. prime
- Select a random integer e with $1<e<\varphi(n)$ and $\operatorname{gcd}(e, \varphi(n))=1$.
- Compute the unique integer $d, 1<d<\varphi(n)$ such that

$$
e d \equiv 1(\bmod \varphi(n)) .
$$

The Public Key and Encryption.

- Make public n and e.
- Encipher plaintext P by

$$
C=P^{e} \bmod n .
$$

The Private Key and Decryption.

- Keep private $p, q, \varphi(n)$, and d
- Decipher ciphertext C by

$$
P=C^{d} \bmod n
$$

A Small Example.

Select two primes:
$p=11$ and $q=13$.
So $n=p q=143$.
Now $\varphi(n)=(p-1)(q-1)=10 \cdot 12=120$.
Choose e coprime with $\varphi(n)$:
Choose $e=37$.
Find d :
We need $e \cdot d \equiv 1(\bmod 120)$.
Compute $37^{-1} \bmod 120$.
Now solve $37 d \equiv 1(\bmod 120)$; that is, solve $37 d+120 q=1$ for d.

$$
\left.\begin{array}{rl}
120 & =3 \cdot 37+9 \\
37 & =4 \cdot 9+(1 .)
\end{array}\right\} \begin{gathered}
\text { gcd }(37,120)
\end{gathered} \text { EndiSom Alg. }
$$

so

$$
\left.\begin{array}{rl}
\operatorname{gct}(37,120)=1 & =37-4 \cdot 9 \\
& =37-4(120-3 \cdot 37) \\
& =13 \cdot 37-4 \cdot 120 .
\end{array}\right\} \text { Extended E.A. }
$$

Therefore $d=13 . \quad 37 s+120 t$
Alternatively, we could compute $37^{\varphi(120)-1} \bmod 120$:

$$
\begin{aligned}
\varphi(120) & =\varphi(12 \cdot 10)=\varphi\left(2^{2} \cdot 3 \cdot 2 \cdot 5\right)=\varphi\left(2^{3} \cdot 3 \cdot 5\right) \\
& =\varphi\left(2^{3}\right) \varphi(3) \varphi(5)=\left(2^{3}-2^{2}\right)(3-1)(5-1)=(8-4)(2)(4)=4 \cdot 2 \cdot 4=32 .
\end{aligned}
$$

So $\varphi(120)=32$, and $\varphi(120)-1=31$.

Now, reducing by mod 120 ,

$$
\begin{aligned}
37^{\varphi(120)-1} & =37^{31}=37^{1+30}=37^{1+2 \cdot 15}=37 \cdot\left(37^{2}\right)^{15} \\
& \equiv 37 \cdot 49^{15}=37 \cdot 49^{1+2 \cdot 7}=37 \cdot 49 \cdot\left(49^{2}\right)^{7} \\
& \equiv 37 \cdot 49 \cdot 1^{7}=31 \cdot 49 \\
& \equiv 13(\bmod 120) .
\end{aligned}
$$

Note: With this base (120), $e=19,29$, and 31 are all their own inverses! So these would be bad choices for e.
The Public Key:
$n=143, e=37$
The Private Key:
$n=143, d=13$

Encipher a Message: Let's encipher "Hi."

- Begin by converting our plaintext into a number or series of numbers. Using the ASCII values, we find that

$$
\begin{aligned}
& \mathrm{H} \longleftrightarrow 72 \\
& \mathrm{i} \longleftrightarrow 105
\end{aligned}
$$

$$
. \longleftrightarrow 46
$$

- Raise each to the power $e=37$ and reduce $\bmod 143$.

$$
\begin{aligned}
72^{37} & =72^{1+2 \cdot 18}=72 \cdot 72^{2 \cdot 18}=72 \cdot\left(72^{2}\right)^{18} \\
& \equiv 72 \cdot 36^{18}=72 \cdot 36^{2 \cdot 9}=72 \cdot\left(36^{2}\right)^{9} \\
& \equiv 72 \cdot 9^{9}=72 \cdot 9^{3 \cdot 3}=72 \cdot\left(9^{3}\right)^{3} \\
& \equiv 72 \cdot 14^{3} \equiv 72 \cdot 27 \\
& \equiv 85 .(\bmod 143)
\end{aligned}
$$

85 is the enciphered letter " H ".

$$
\begin{aligned}
105^{37} & =105^{1+2 \cdot 18}=105 \cdot 105^{2 \cdot 18}=105 \cdot\left(105^{2}\right)^{18} \\
& \equiv 105 \cdot 14^{18}=105 \cdot 14^{2 \cdot 9}=105 \cdot\left(14^{2}\right)^{9} \\
& \equiv 105 \cdot 53^{9}=105 \cdot 53^{3 \cdot 3}=105 \cdot\left(53^{3}\right)^{3} \\
& \equiv 105 \cdot 14^{3} \equiv 105 \cdot 27 \\
& \equiv 118 .(\bmod 143)
\end{aligned}
$$

118 is the enciphered letter "i".

$$
\begin{aligned}
46^{37} & =46^{1+2 \cdot 18}=46 \cdot 46^{2 \cdot 18}=46 \cdot\left(46^{2}\right)^{18} \\
& \equiv 46 \cdot 114^{18}=46 \cdot 114^{2 \cdot 9}=46 \cdot\left(114^{2}\right)^{9} \\
& \equiv 46 \cdot 126^{9}=46 \cdot 126^{3 \cdot 3}=46 \cdot\left(126^{3}\right)^{3} \\
& \equiv 46 \cdot 92^{3} \equiv 46 \cdot 53 \\
& \equiv 7 \cdot(\bmod 143)
\end{aligned}
$$

7 is the enciphered letter ".".

The ciphertext C_{t} is 857.

Decrypter $C_{1}^{d} \bmod n=85^{13} \bmod 143 \rightarrow 72$

Decipher a Message: Let's decipher the ciphertext we just received, $C_{t}=851057$.

- Raise each number in the ciphertext to the power $d=13$ and reduce mod 143. Then look up the letter in the ASCII table.

$$
\begin{aligned}
85^{13} & =85^{1+2 \cdot 2 \cdot 3}=85 \cdot 85^{2 \cdot 2 \cdot 3}=85 \cdot\left(\left(85^{2}\right)^{2}\right)^{3} \\
& \equiv 85 \cdot\left(75^{2}\right)^{3} \equiv 85 \cdot 48^{3} \equiv 85 \cdot 53 \\
& \equiv 72 .
\end{aligned}
$$

72 is the ASCII value of " H ".

$$
\begin{aligned}
118^{13} & =118^{1+2 \cdot 2 \cdot 3}=118 \cdot 118^{2 \cdot 2 \cdot 3}=118 \cdot\left(\left(118^{2}\right)^{2}\right)^{3} \\
& \equiv 118 \cdot\left(53^{2}\right)^{3} \equiv 118 \cdot 92^{3} \equiv 118 \cdot 53 \\
& \equiv 105
\end{aligned}
$$

105 is the ASCII value of " i ".

$$
\begin{aligned}
7^{13} & =7^{1+2 \cdot 2 \cdot 3}=7 \cdot 7^{2 \cdot 2 \cdot 3}=7 \cdot\left(\left(7^{2}\right)^{2}\right)^{3} \\
& \equiv 7 \cdot\left(49^{2}\right)^{3} \equiv 7 \cdot 113^{3} \equiv 7 \cdot 27 \\
& \equiv 46 .
\end{aligned}
$$

46 is the ASCII value of ".".

The plaintext P_{t} is "Hi.".

Why it works

$$
C=P^{e} \bmod n \quad \text { received }
$$

To decrypt

$$
C^{d \bmod n}=\left(P^{e} \bmod n\right)^{d \bmod n}
$$

How set-up gets used

$$
=\left(p^{e}\right)^{d} \bmod n=P T_{\text {insult }}^{e d} \bmod n
$$

$$
e d \equiv 1(\bmod \varphi(n))
$$

$$
\longleftrightarrow \quad \varphi(n) \mid e d-1
$$

$$
\longleftrightarrow \exists k \in \mathbb{Z} \text { such that } k \cdot \varphi(n)=e d-1
$$

$$
\leftrightarrow e d=k \varphi(n)+1
$$

$$
C_{\bmod n}^{d}=p^{e d} \bmod n
$$

$$
\begin{aligned}
& =P^{k \varphi(n)+1} \bmod n \\
& =P \cdot\left[P^{\varphi(n)}\right]^{k} \operatorname{modn} n
\end{aligned}
$$

Everis Thm. gives $P^{\varphi(n)} \equiv 1\left(m l_{n}\right)$ (ivemot instencas)

$$
\begin{aligned}
& =P \cdot(1)^{k} m_{0} l_{n} \\
& =P
\end{aligned}
$$

Why It Works. In order to decode ciphertext C into the original plaintext P, we need

$$
P=C^{d}=\left(P^{e} \bmod n\right)^{d}=P^{e \cdot d} \bmod n .
$$

The requirement that $e d \equiv 1(\bmod \varphi(n))$, means that $e d$ can be written as

$$
e d=1+k \cdot \varphi(n)
$$

for some integer k. Therefore

$$
\begin{aligned}
P^{d \cdot e} & =P^{1+k \varphi(n)} \\
& =P^{1} \cdot P^{\varphi(n) \cdot k} \\
& =P \cdot\left(P^{\varphi(n)}\right)^{k} \\
& \equiv P \cdot 1 \equiv P(\bmod n) .
\end{aligned}
$$

Protocols.

The Context.

- Bob creates an RSA crypto-system with public key (n_{B}, e_{B}) and private key $\left(n_{B}, d_{B}\right)$.
- Alice creates an RSA crypto-system with public key $\left(n_{A}, e_{A}\right)$ and private key $\left(n_{A}, d_{A}\right)$

Implementations.

Alice sends a message P to Bob:

- Alice wants her message to Bob to be read only by him.
(1) Alice encrypts P into C using Bob's public key (n_{B}, e_{B}) and sends C to Bob.
(2) Bob uses his private key $\left(n_{B}, d_{B}\right)$ to decipher C back into P.
Alice sends a signed message P to Bob:
- Alice wants her message to Bob to be read only by him.
- Bob wants assurance that it was Alice who sent him the message, and that Alice cannot deny that she sent it.
(1) Alice signs P by encrypting it into S using her private key $\left(n_{A}, d_{A}\right)$, then she enciphers S into C using Bob's public key (n_{B}, e_{B}) and sends C to Bob.
(2) Bob deciphers C into S using his private key $\left(n_{B}, d_{B}\right)$, then he "unsigns" S into P using Alice's public key (n_{A}, e_{A}). Since only Alice had the inverse of her decryption, the message had to come from Alice.

Practical Matters.

The implementation has several practical matters.

Handling Long Messages:

If the message is long, break it up into numbers P_{t} where

$$
0<P_{t}<n
$$

and perform RSA on each P_{t}.

Randomly Selecting Primes p and q :

Security requires that p and q not be guessed easily, so they should have no special characteristics other than being prime. This is achieved using probabilistic methods.
(1) "Randomly" generate a string of digits of the appropriate length (ending in an odd digit other than 5).
(In a binary implementation, just require that the units bit be 1.)
This becomes a candidate for p (or q).
(2) Run a probabilistic test for primality k times. If it passes k times then the probability that it is prime is

$$
1-\frac{1}{b^{k}}
$$

where b depends on the particular test. (E.g. $b=2$ for the Solovay-Strassen test, $b=4$ for the Miller-Rabin test.)

Preliminary Checks:

Before fixing values for p, q, and e, a good implementation will involve a computation of d to see that the choices yield no unfortunate surprises.

- If $p-q$ is small, then $p \approx \sqrt{n}$, in which case n could be factored efficiently merely by trial division of all odd numbers close to \sqrt{n}.
- A good implementation will involve a check that $d \neq e$. This is rare that $d=e$, but it is not impossible.
(If $p=11$ and $q=13$, then if $e=19,29$, or 31 , then $d=e$.)

Raising Powers:

Because the size of P^{e} and C^{d} increase exponentially in their computation, it is vital that the "square and multiply" algorithm be used and that modulo-n reduction be performed at each step.

Square and Multiply
Compute $x^{b} \bmod n$ where $b=\left(b_{t} \ldots b_{1} b_{0}\right)_{2}$.

```
Input: \(x\) and \(b\)
\(z:=1\)
for \(i:=t\) down to 0 do
    \(z:=z^{2} \bmod n\)
    if \(b_{i}=1\) then \(z=(z \cdot x) \bmod n\).
```

Example. Compute x^{11} : Note that

$$
(11)_{10}=(1011)_{2}=\left(b_{3} b_{2} b_{1} b_{0}\right)_{2} .
$$

$z:=1$
$z:=z \cdot x \quad$ (I.e. $z=x$. This handles $b_{3}=1$)
$z:=z^{2} \quad$ (I.e. $z=x^{2}$. This handles $b_{2}=0$)
$z:=z^{2} \quad$ (I.e. $z=x^{4}$)
$z:=z \cdot x \quad\left(\right.$ I.e. $z=x^{5}$. This handles $\left.b_{1}=1\right)$
$z:=z^{2} \quad$ (I.e. $z=x^{10}$) $z:=z \cdot x \quad$ (I.e. $z=x^{11}$. This handles $b_{0}=1$)

Fair Warning:

Regardless of your choice of p, q, and e, there will always be plaintexts P for which $P^{e} \equiv P(\bmod n)$. (For example, $P=0,1$, and
$n-1$.) In fact, the number of such "unconcealed messages" is exactly

$$
(1+\operatorname{gcd}(e-1, p-1)) \cdot(1+\operatorname{gcd}(e-1, q-1))
$$

and since $e-1, p-1$, and $q-1$ are all even, there will always be at least 9 unconcealed messages.

Fortunately, if p and q are prime, and if e is randomly selected, then the proportion of messages left unconcealed by RSA is generally negligibly small.

Why $\varphi(n)$ Must Be Kept Secret.
If both n (i.e. $p \cdot q$) and $\varphi(n)$ (i.e. $(p-1)(q-1)$) are known, then the values of p and q can be computed using the following technique.

$$
(p-1)(q-1)=p q-p-q+1
$$

so

$$
\begin{aligned}
\varphi(n)-n-1 & =(p q-p-q+1)-p q-1 \\
& =-(p+q)
\end{aligned}
$$

Also,

$$
x^{2}-(a+b) x+a b=0
$$

has solutions a and b.
Now use the quadratic formula to find the zeros of

$$
x^{2}+\underbrace{(\varphi(n)-n-1)}_{-(p+q)} x+\underbrace{n}_{p q}=0
$$

Example. Suppose $n=253$ and $\varphi(n)=220$.
Solve

$$
\begin{aligned}
& x^{2}+(220-253-1) x+253= \\
& x^{2}-34 x+253=0 \\
& x=\frac{-(-34) \pm \sqrt{(-34)^{2}-4 \cdot 253}}{2} \\
&=\frac{34 \pm \sqrt{1156-1012}}{2} \\
&=\frac{34 \pm \sqrt{144}}{2} \\
&=\frac{34 \pm 12}{2} \\
&=\frac{46}{2} \text { or } \frac{22}{2}=23 \text { or } 11
\end{aligned}
$$

Notice: 11 and 23 are primes, with

$$
11 \cdot 23=253=n
$$

and

$$
(11-1)(23-1)=10 \cdot 22=220=\varphi(n)
$$

