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Description of RSA.

RSA encryption starts with a numerical plaintext P and converts it into

a numerical ciphertext C by

C = P e
mod n.

Upon receipt, C is decrypted in a similar manner using the same modulus

n and a di↵erent exponent d. That is

P = Cd
mod n.

The values of n, e, and d are constructed as follows.

Key Generation.

• Randomly select two primes p & q.
To keep the factoring of n from defaulting to something that might be

“easy”, p & q should be roughly the same size. In real world implemen-

tations, they are about 150 digits long. This corresponds to “1024-bit

encryption”, the 1024 bits referring to the size of n.

• Compute n = pq and '(n) = (p� 1)(q � 1).

• Select a random integer e with 1 < e < '(n) and gcd(e, '(n)) = 1.

• Compute the unique integer d, 1 < d < '(n) such that

ed ⌘ 1 (mod '(n)).

The Public Key and Encryption.

• Make public n and e.
• Encipher plaintext P by

C = P e
mod n.

The Private Key and Decryption.

• Keep private p, q, '(n), and d
• Decipher ciphertext C by

P = Cd
mod n.

Decryptor choose

pg prime

n pg
choose e

share e n
keepsecret d

prime
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A Small Example.

Select two primes:

p = 11 and q = 13.

So n = pq = 143.

Now '(n) = (p� 1)(q � 1) = 10 · 12 = 120.

Choose e coprime with '(n):

Choose e = 37.

Find d:
We need e · d ⌘ 1 (mod 120).

Compute 37
�1

mod 120.

Now solve 37d ⌘ 1 (mod 120); that is, solve 37d + 120q = 1 for

d.

120 = 3 · 37 + 9

37 = 4 · 9 + 1,

so

1 = 37� 4 · 9
= 37� 4(120� 3 · 37)

= 13 · 37� 4 · 120.

Therefore d = 13.

Alternatively, we could compute 37
'(120)�1

mod 120:

'(120) = '(12 · 10) = '(2
2 · 3 · 2 · 5) = '(2

3 · 3 · 5)

= '(2
3
)'(3)'(5) = (2

3 � 2
2
)(3� 1)(5� 1) = (8� 4)(2)(4) = 4 · 2 · 4 = 32.

So '(120) = 32, and '(120)� 1 = 31.

Now, reducing by mod 120,

37
'(120)�1

= 37
31

= 37
1+30

= 37
1+2·15

= 37 · (37
2
)
15

⌘ 37 · 49
15

= 37 · 49
1+2·7

= 37 · 49 · (49
2
)
7

⌘ 37 · 49 · 17
= 31 · 49

⌘ 13 (mod 120).

Note: With this base (120), e = 19, 29, and 31 are all their own

inverses! So these would be bad choices for e.
The Public Key:

n = 143, e = 37

The Private Key:

n = 143, d = 13

4143 9111.13

p Il 0113 10 12 120

EadSamAtg

god137,120

gold37,120 ExtendedEA

37s trot
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Encipher a Message: Let’s encipher “Hi.”

• Begin by converting our plaintext into a number or series of

numbers. Using the ASCII values, we find that

H ! 72

i ! 105

. ! 46

• Raise each to the power e = 37 and reduce mod 143.

72
37

= 72
1+2·18

= 72 · 72
2·18

= 72 · (72
2
)
18

⌘ 72 · 36
18

= 72 · 36
2·9

= 72 · (36
2
)
9

⌘ 72 · 99
= 72 · 93·3

= 72 · (93
)
3

⌘ 72 · 14
3 ⌘ 72 · 27

⌘ 85.

85 is the enciphered letter “H”.

105
37

= 105
1+2·18

= 105 · 105
2·18

= 105 · (105
2
)
18

⌘ 105 · 14
18

= 105 · 14
2·9

= 105 · (14
2
)
9

⌘ 105 · 53
9

= 105 · 53
3·3

= 105 · (53
3
)
3

⌘ 105 · 14
3 ⌘ 105 · 27

⌘ 118.

118 is the enciphered letter “i”.

46
37

= 46
1+2·18

= 46 · 46
2·18

= 46 · (46
2
)
18

⌘ 46 · 114
18

= 46 · 114
2·9

= 46 · (114
2
)
9

⌘ 46 · 126
9

= 46 · 126
3·3

= 46 · (126
3
)
3

⌘ 46 · 92
3 ⌘ 46 · 53

⌘ 7.

7 is the enciphered letter “.”.

The ciphertext Ct is 85 105 7.

mod143

mod143

mod143

118

P P P
Original 72 105 46
Facrylate 85 118 7

C C C

Deuypkrqdm.sn 85 mod143 72
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Decipher a Message: Let’s decipher the ciphertext we just received,

Ct = 851057.

• Raise each number in the ciphertext to the power d = 13 and

reduce mod 143. Then look up the letter in the ASCII table.

85
13

= 85
1+2·2·3

= 85 · 85
2·2·3

= 85 · ((85
2
)
2
)
3

⌘ 85 · (75
2
)
3 ⌘ 85 · 48

3 ⌘ 85 · 53

⌘ 72.

72 is the ASCII value of “H”.

118
13

= 118
1+2·2·3

= 118 · 118
2·2·3

= 118 · ((118
2
)
2
)
3

⌘ 118 · (53
2
)
3 ⌘ 118 · 92

3 ⌘ 118 · 53

⌘ 105.

105 is the ASCII value of “i”.

7
13

= 7
1+2·2·3

= 7 · 72·2·3
= 7 · ((72

)
2
)
3

⌘ 7 · (49
2
)
3 ⌘ 7 · 113

3 ⌘ 7 · 27

⌘ 46.

46 is the ASCII value of “.”.

The plaintext Pt is “Hi.”.

whyitworks
C Pernod n received

To decrypt

Cdmodn Penrodn mod n

Pe
d
modn Pedmod n

How setup Hts I

ed molokai as an ed I

I k 2 such that kUn ed I
ed kd

cdm.sn Pedmod
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Why It Works. In order to decode ciphertext C into the original plaintext

P , we need

P = Cd
= (P e

mod n)
d

= P e·d
mod n.

The requirement that ed ⌘ 1 (mod '(n)), means that ed can be written

as

ed = 1 + k · '(n)

for some integer k. Therefore

P d·e
= P 1+k'(n)

= P 1 · P'(n)·k

= P ·
⇣
P'(n)

⌘k

⌘ P · 1 ⌘ P (mod n).

Protocols.

The Context.

• Bob creates an RSA crypto-system with public key (nB, eB) and

private key (nB, dB).

• Alice creates an RSA crypto-system with public key (nA, eA) and

private key (nA, dA)

Implementations.

Alice sends a message P to Bob:

• Alice wants her message to Bob to be read only by him.

(1) Alice encrypts P into C using Bob’s public key (nB, eB)

and sends C to Bob.

(2) Bob uses his private key (nB, dB) to decipher C back into

P .

Alice sends a signed message P to Bob:

• Alice wants her message to Bob to be read only by him.

• Bob wants assurance that it was Alice who sent him the message,

and that Alice cannot deny that she sent it.

(1) Alice signs P by encrypting it into S using her private key

(nA, dA), then she enciphers S into C using Bob’s public

key (nB, eB) and sends C to Bob.

(2) Bob deciphers C into S using his private key (nB, dB), then

he “unsigns” S into P using Alice’s public key (nA, eA).

Since only Alice had the inverse of her decryption, the

message had to come from Alice.

Practical Matters.

The implementation has several practical matters.

Handling Long Messages:

If the message is long, break it up into numbers Pt where

0 < Pt < n

and perform RSA on each Pt.

Randomly Selecting Primes p and q:
Security requires that p and q not be guessed easily, so they

should have no special characteristics other than being prime. This

is achieved using probabilistic methods.
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(1) “Randomly” generate a string of digits of the appropriate length

(ending in an odd digit other than 5).

(In a binary implementation, just require that the units bit be 1.)

This becomes a candidate for p (or q).
(2) Run a probabilistic test for primality k times. If it passes k times

then the probability that it is prime is

1� 1

bk

where b depends on the particular test. (E.g. b = 2 for the

Solovay-Strassen test, b = 4 for the Miller-Rabin test.)

Preliminary Checks:

Before fixing values for p, q, and e, a good implementation will in-

volve a computation of d to see that the choices yield no unfortunate

surprises.

• If p� q is small, then p ⇡
p

n, in which case n could be factored

e�ciently merely by trial division of all odd numbers close top
n.

• A good implementation will involve a check that d 6= e. This is

rare that d = e, but it is not impossible.

(If p = 11 and q = 13, then if e = 19, 29, or 31, then d = e.)
Raising Powers:

Because the size of P e
and Cd

increase exponentially in their com-

putation, it is vital that the “square and multiply” algorithm be used

and that modulo-n reduction be performed at each step.

Square and Multiply

Compute xb
mod n where b = (bt . . . b1b0)2.

Input: x and b
z := 1

for i := t down to 0 do
z := z2

mod n
if bi = 1 then z = (z · x) mod n.

Example. Compute x11
: Note that

(11)10 = (1011)2 = (b3b2b1b0)2.

z := 1

z := z · x (I.e. z = x. This handles b3 = 1)

z := z2
(I.e. z = x2

. This handles b2 = 0)

z := z2
(I.e. z = x4

)

z := z · x (I.e. z = x5
. This handles b1 = 1)

z := z2
(I.e. z = x10

)

z := z · x (I.e. z = x11
. This handles b0 = 1)

Fair Warning:

Regardless of your choice of p, q, and e, there will always be plain-

texts P for which P e ⌘ P (mod n). (For example, P = 0, 1, and
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n�1.) In fact, the number of such “unconcealed messages” is exactly

(1 + gcd(e� 1, p� 1)) · (1 + gcd(e� 1, q � 1))

and since e� 1, p� 1, and q� 1 are all even, there will always be at

least 9 unconcealed messages.

Fortunately, if p and q are prime, and if e is randomly selected,

then the proportion of messages left unconcealed by RSA is generally

negligibly small.

Why '(n) Must Be Kept Secret.

If both n (i.e. p · q) and '(n) (i.e. (p � 1)(q � 1)) are known, then the

values of p and q can be computed using the following technique.

(p� 1)(q � 1) = pq � p� q + 1

so

'(n)� n� 1 = (pq � p� q + 1)� pq � 1

= �(p + q)

Also,

x2 � (a + b)x + ab = 0

has solutions a and b.
Now use the quadratic formula to find the zeros of

x2
+ ('(n)� n� 1)| {z }

�(p+q)

x + n|{z}
pq

= 0

Example. Suppose n = 253 and '(n) = 220.

Solve

x2
+ (220� 253� 1)x + 253 =

x2 � 34x + 253 = 0

x =
�(�34) ±

p
(�34)2 � 4 · 253

2

=
34 ±

p
1156� 1012

2

=
34 ±

p
144

2

=
34 ± 12

2

=
46

2
or

22

2
= 23 or 11

Notice: 11 and 23 are primes, with

11 · 23 = 253 = n

and

(11� 1)(23� 1) = 10 · 22 = 220 = '(n)


